in

Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo)

[adace-ad id="91168"]

This study describes the virological and pathological findings of Common buzzards infected with the 2020–2021 HPAI H5N8 virus. These analyses showed that the main lesions were HPAI virus-associated inflammation and necrosis in multiple tissues including brain and heart, confirming HPAI as cause of death or severe disease.

The Common buzzard presents with several characteristic traits that make it a valuable bioindicator of HPAIV presence in wildlife. It is a medium-sized raptor, present almost throughout Europe. In the Netherlands, its population has been stable since 1970 with an estimated maximum winter population of 30,000–50,000 individuals16. The Common buzzard is mainly a resident bird, which generally inhabits woodlands but is adaptable to wetlands16,17. Its feeding behavior as an opportunistic predator and scavenger has the potential to expose it to HPAIV-infected prey. Given these predisposing biological traits, it is not unexpected that Common buzzards accounted for the highest number of HPAI virus detections in raptors during the 2020–2021 epizootic.

Previous studies showed that HPAI viruses in raptors are highly neurotropic and cause severe neurological disease8,10,15,18,19. This study also supports those findings, as the most consistent lesion in Common buzzards was viral encephalitis, with confirmed presence of viral antigen in affected neurons. In addition to the nervous system, all the tissues tested of the Common buzzards were positive for virus based on RT-PCR and showed infection-related, histological lesions, indicating that HPAI H5N8 virus infection in the Common buzzard causes systemic disease.

This study showed that HPAI H5N8 virus is also highly cardiotropic, as the myocardium of the Common buzzards contained the highest amount of virus based on RT-PCR (Table 1), and virus-associated, severe histological lesions in 63% (7/11) birds. In addition, 54% (6/11) of the Common buzzards showed virus-associated lesions in the liver and spleen.

The Common buzzard is considered to be infected via the oral route by ingesting HPAIV-infected preys. Transmission of HPAIV from ingesting infected chicken meat has been experimentally confirmed in raptors20. Interestingly, the proventriculus of two birds in our study showed necrotic lesions with viral antigen. This finding further supports the oral route of infection, although we cannot exclude the possibility that the proventriculus was infected via the hematogenous route. It also provides new records of HPAIV enterotropism in wild birds. The adaptation to the intestinal tract is a mechanism recently reported for HPAI H5N8 virus, that may allow a more efficient fecal–oral transmission in wild birds5.

Real time PCR (RT-PCR) is the preferred test for HPAI virus detection for active and passive bird surveillance9. In this study, cloacal and pharyngeal swabs had comparable RNA-levels, and both were adequate for the detection of the virus. The tissue analysis by RT-PCR showed that heart, brain, and air sac had highest viral RNA concentrations compared to other organs. Although not confirmed by a quantitative real time PCR, the results obtained by RT-PCR are well supported by histopathology and immunohistochemistry. Our advice for diagnostic pathologists is to collect at least a miniset of samples including brain, heart, liver and spleen, as these tissues are relatively easily sampled and were positive by both RT-PCR and for virus-antigen-associated lesions. For virus diagnosis of Common buzzards found dead (but without the interest or possibility to perform pathological examination), it is enough to collect pharyngeal and cloacal swabs, because they were positive by RT-PCR with Ct values that were comparable to those in most tissues (with exception of heart, that had higher Ct values).

We did not detect antibodies against avian influenza virus NP in the sera of the Common buzzards in this study. Most of the birds (8/11) were juveniles in their first year of life, and likely they did not have protective antibodies from previous infections, as this was the first time in their lives that they experienced a HPAI epizootic. The absence of antibodies indicates also that the Common buzzards died acutely soon after infection, similarly to experimentally infected raptors that did not seroconvert before early death19. All the birds in our study were females. Females are larger than males (adult female weigh about 15% more than adult males), thus it is possible that female raptors are easier to find during surveillance or that there are sex-associated differences in feeding patterns.

This study showed that HPAIV infection in Common buzzards produced severe systemic disease, and subsequent acute death based on the stage of the pathological changes and absence of serum antibodies. Cloacal and pharyngeal swabs were comparable in detecting the infection. Many organs contained viral RNA; with heart, brain and air sac containing the highest amount of viral RNA. The proventriculus of two birds showed virus-associated lesions, implying a possible adaptation of the virus to the gastro-intestinal tract.


Source: Ecology - nature.com

Biodiversity conservation in Afghanistan under the returned Taliban

Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest