Ayoob, S. & Gupta, A. K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol. 36, 433–487 (2006).
Google Scholar
Ali, S., Thakur, S. K., Sarkar, A. & Shekhar, S. Worldwide contamination of water by fluoride. Environ. Chem. Lett. 14, 291–315 (2016).
Google Scholar
Lacson, C. F. Z., Lu, M.-C. & Huang, Y.-H. Fluoride containing water: A global perspective and a pursuit to sustainable water defluoridation management-an overview. J. Cleaner Prod. 280, 124236 (2020).
Handa, B. Geochemistry and genesis of fluoride‐containing ground waters in india. Groundwater 13, 275–281 (1975).
Google Scholar
Hudak, P. F. Fluoride levels in Texas groundwater. J. Environ. Sci. Health Part A 34, 1659–1676 (1999).
Google Scholar
Brunt, R., Vasak, L. & Griffioen, J. Fluoride in Groundwater: Probability of occurrence of excessive concentration on global scale. unigrac.org (2004).
Jacks, G., Bhattacharya, P., Chaudhary, V. & Singh, K. Controls on the genesis of some high-fluoride groundwaters in India. Appl. Geochem. 20, 221–228 (2005).
Google Scholar
Rao, N. S. High-fluoride groundwater. Environ. Monit. Assess. 176, 637–645 (2011).
Google Scholar
Edmunds, W. M. & Smedley, P. L. Essentials of Medical Geology 311–336 (Springer, 2013).
Alarcón-Herrera, M. T. et al. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility, and remediation. J. Hazard. Mater. 262, 960–969 (2013).
Google Scholar
Wen, D. et al. Arsenic, fluoride and iodine in groundwater of China. J. Geochem. Exploration 135, 1–21 (2013).
Google Scholar
Malago, J., Makoba, E. & Muzuka, A. N. Fluoride levels in surface and groundwater in Africa: A review. Am. J. Water Sci. Eng. 3, 1–17 (2017).
Google Scholar
Alarcón-Herrera, M. T. et al. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 698, 134168 (2020).
Google Scholar
Islam, M. S. & Mostafa, M. Meta‐analysis and risk assessment of fluoride contamination in groundwater. Water Environ. Res. 93, 1194–1216 (2021).
Fawell, J., Bailey, K., Chilton, J., Dahi, E. & Magara, Y. Fluoride in Drinking-Water (IWA Publishing, 2006).
Maithani, P. et al. Anomalous fluoride in groundwater from western part of Sirohi district, Rajasthan and its crippling effects on human health. Curr. Sci. 74, 773–777 (1998).
Xiong, X. et al. Dose–effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environ. Res. 103, 112–116 (2007).
Google Scholar
Barbier, O., Arreola-Mendoza, L. & Del Razo, L. M. Molecular mechanisms of fluoride toxicity. Chem.-Biol. Interact. 188, 319–333 (2010).
Google Scholar
Jha, S. et al. Fluoride in groundwater: Toxicological exposure and remedies. J. Toxicol. Environ. Health, Part B 16, 52–66 (2013).
Google Scholar
Yadav, K. K. et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicol. Environ. Saf. 182, 109362 (2019).
Google Scholar
Aravinthasamy, P. et al. Fluoride contamination in groundwater of the Shanmuganadhi River basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry 80, 125555 (2020).
Google Scholar
Schlesinger, W. H., Klein, E. M. & Vengosh, A. Global biogeochemical cycle of fluorine. Glob. Biogeochem. Cycles 34, e2020GB006722 (2020).
Google Scholar
WHO. Guidelines for drinking-water quality. WHO Chron. 38, 104–108 (2011).
WHO. Fluoride in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality, Geneva (2004).
Reddy, K. N. Revised guidelines of National Water Quality Sub-Mission (Government of India, Ministry of Drinking Water and Sanitation, 2017).
U.S. EPA. Six-Year Review 3—Health Effects Assessment for Existing Chemical and Radionuclide National Primary Drinking Water Regulations—Summary Report (U.S. Environmental Protection Agency, 2016).
Vithanage, M. & Bhattacharya, P. Fluoride in the environment: Sources, distribution, and defluoridation. Environ. Chem. Lett. 13, 131–147 (2015).
Google Scholar
Wang, Y. et al. Genesis of geogenic contaminated groundwater: As, F and I. Crit. Rev. Environ. Sci. Technol. 51, 1–39 (2020).
He, X. et al. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution, and management. Exposure Health 12, 1–14 (2020).
Guo, Q., Wang, Y., Ma, T. & Ma, R. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Exploration 93, 1–12 (2007).
Google Scholar
Saxena, V. & Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 43, 731–736 (2003).
Google Scholar
Schafer, D. et al. Model-based analysis of reactive transport processes governing fluoride and phosphate release and attenuation during managed aquifer recharge. Environ. Sci. Technol. 54, 2800–2811 (2020).
Google Scholar
Johnston, R. B., Berg, M., Johnson, C. A., Tilley, E. & Hering, J. G. Water and sanitation in developing countries: Geochemical aspects of quality and treatment. Elements 7, 163–168 (2011).
Google Scholar
Bretzler, A. & Johnson, C. A. The geogenic contamination handbook: Addressing arsenic and fluoride in drinking water. Appl. Geochem. 63, 642–646 (2015).
Google Scholar
Lombard, M. A. et al. Machine learning models of arsenic in private wells throughout the conterminous United States as a tool for exposure assessment in human health studies. Environ. Sci. Technol. 55, 5012–5023 (2021).
Google Scholar
Mukherjee, A. et al. Occurrence, predictors, and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. Sci. Total Environ. 759, 143511 (2021).
Google Scholar
Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).
Google Scholar
Podgorski, J. E., Labhasetwar, P., Saha, D. & Berg, M. Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ. Sci. Technol. 52, 9889–9898 (2018).
Google Scholar
Amini, M. et al. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ. Sci. Technol. 42, 3662–3668 (2008).
Google Scholar
Rosecrans, C. Z., Belitz, K., Ransom, K. M., Stackelberg, P. E. & McMahon, P. B. Predicting regional fluoride concentrations at public and domestic supply depths in basin-fill aquifers of the western United States using a random forest model. Sci. Total Environ. 806, 150960 (2022).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Jia, Y. et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Sci. Total Environ. 643, 967–993 (2018).
Google Scholar
Podgorski, J. E. et al. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. https://doi.org/10.1126/sciadv.1700935 (2017).
Podgorski, J., Wu, R., Chakravorty, B. & Polya, D. A. Groundwater arsenic distribution in India by machine learning geospatial modeling. Int. J. Environ. Res. public health 17, 7119 (2020).
Google Scholar
Ayotte, J. D., Medalie, L., Qi, S. L., Backer, L. C. & Nolan, B. T. Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51, 12443–12454 (2017).
Google Scholar
Gizaw, B. The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system. J. Afr. Earth Sci. 22, 391–402 (1996).
Google Scholar
Borgnino, L. et al. Mechanisms of fluoride release in sediments of Argentina’s central region. Sci. Total Environ. 443, 245–255 (2013).
Google Scholar
McMahon, P. B., Brown, C. J., Johnson, T. D., Belitz, K. & Lindsey, B. D. Fluoride occurrence in United States groundwater. Sci. Total Environ. 732, 139217 (2020).
Google Scholar
Alcaine, A. A. et al. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 715, 136671 (2020).
Google Scholar
Hossain, M. & Patra, P. K. Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environ. Pollut. 258, 113646 (2020).
Google Scholar
JMP. Global data on Water Supply, Sanitation and Hygiene (WASH), https://washdata.org/data/household#!/ (2019).
Gao, J. (ed.) Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100. NASA Socioeconomic Data and Applications Center (SEDAC) (2019).
Araya, D., Podgorski, J., Kumi, M., Mainoo, P. A. & Berg, M. Fluoride contamination of groundwater resources in Ghana: Country-wide hazard modeling and estimated population at risk. Water Res. 212, 118083 (2022).
Cao, H., Xie, X., Wang, Y. & Liu, H. Predicting geogenic groundwater fluoride contamination throughout China. J. Environ. Sci. 115, 140–148 (2022).
Google Scholar
Bretzler, A. et al. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 584, 958–970 (2017).
Google Scholar
Wu, R., Podgorski, J., Berg, M. & Polya, D. A. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environ. Geochem. Health 43, 2649–2664 (2020).
Craig, L., Lutz, A., Berry, K. A. & Yang, W. Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. Sci. Total Environ. 532, 127–137 (2015).
Google Scholar
Ayoob, S., Gupta, A. & Bhat, V. T. A conceptual overview on sustainable technologies for the defluoridation of drinking water. Crit. Rev. Environ. Sci. Technol. 38, 401–470 (2008).
Google Scholar
Scott, D. W. Sturges’ rule. Wiley Interdiscip. Rev.: Comput. Stat. 1, 303–306 (2009).
Google Scholar
R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2014).
Wright, M. N. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, https://arxiv.org/abs/1508.04409 (2015).
Diaz-Uriarte, R. & de Andrés, S. A. Variable selection from random forests: Application to gene expression data. https://arxiv.org/abs/q-bio/0503025 (2005).
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Google Scholar
Podgorski, J. & Berg, M. Podgorski_and_Berg_2022. ERIC/open https://doi.org/10.25678/0006GQ (2022).
Source: Resources - nature.com