More stories

  • in

    A home where world-changing innovations take flight

    In a large, open space on the first floor of 750 Main Street in Cambridge, Massachusetts, a carbon-capture company is heating up molten salts to 600 degrees Celsius right next to a quantum computing company’s device for supercooling qubits. The difference is about 900 degrees across 15 feet.

    It doesn’t take long in the tour of The Engine Accelerator to realize this isn’t your typical co-working space. Companies here are working at the extremes to develop new technologies with world-changing impact — what The Engine Accelerator’s leaders call “tough tech.”

    Comprising four floors and 150,000 square feet next door to MIT’s campus, the new space offers startups specialized lab equipment, advanced machining, fabrication facilities, office space, and a range of startup support services.

    The goal is to give young companies merging science and engineering all of the resources they need to move ideas from the lab bench to their own mass manufacturing lines.

    “The infrastructure has always been a really important accelerant for getting these kinds of companies off and running,” The Engine Accelerator President Emily Knight says. “Now you can start a company and, on day one, start building. Real estate is such a big factor. Our thought was, let’s make this investment in the infrastructure for the founders. It’s an agile lease that enables them to be very flexible as they grow.”

    Since the new facility opened its doors in the summer of 2022, the Accelerator has welcomed around 100 companies that employ close to 1,000 people. In addition to the space, members enjoy educational workshops on topics like fundraising and hiring, events, and networking opportunities that the Accelerator team hopes foster a sense of community among people working in the tough tech space overall.

    “We’re not just advocates for the startups in the space,” Knight says. “We’re advocates for tough tech as a whole. We think it’s important for the state of Massachusetts to create a tough tech hub here, and we think it’s important for national competitiveness.”

    Tough tech gets a home

    The Engine was spun out of MIT in 2016 as a public benefit corporation with the mission of bridging the gap between discovery and commercialization. Since its inception, it has featured an investment component, now known as Engine Ventures, and a shared services component.

    From the moment The Engine opened its doors to startups in its original headquarters on Massachusetts Avenue in Cambridge, the services team got a firsthand look at the unique challenges faced by tough tech startups. After speaking with founders, they realized their converted office space would need more power, stronger floors, and full lab accommodations.

    The team rose to the challenge. They turned a closet into a bio lab. They turned an unused wellness room into a laser lab. They managed to accommodate Commonwealth Fusion Systems when the founders informed them a 5,000-pound magnet would soon arrive for testing.

    But supporting ambitious founders in their quest to build world-changing companies was always going to require a bigger boat. As early as 2017, MIT’s leaders were considering turning the old Polaroid building, which had sat empty next to MIT’s campus for nearly 20 years, into the new home for tough tech.

    Speaking of tough, construction crews began the extensive building renovations for the Accelerator at the end of 2019, a few months before the Covid-19 pandemic. The team managed to avoid the worst of the supply chain disruptions, but they quickly learned the building has its quirks. Each floor is a different ceiling height, and massive pillars known as mushroom columns punctuate each floor.

    Based on conversations with founders, The Engine’s Accelerator team outfitted the renovated building with office and co-working space, a full machine shop, labs for biology and chemistry work, an array of 3D printers, bike storage, and, perhaps most important, cold brew on tap.

    “I think of the Accelerator as a really great Airbnb host rather than a landlord, where maybe you rented a bedroom in a large house, but you feel like you rented the whole thing because you have access to all kinds of amazing equipment,” says Bernardo Cervantes PhD ’20, co-founder of Concerto Biosciences, which is developing microbes for a variety of uses in human health and agriculture.

    The Engine Accelerator’s team credits MIT leadership with helping them manage the project, noting that the MIT Environment, Health and Safety office was particularly helpful.

    A week after the Accelerator opened its doors in August 2022, on a single sweltering day, 35 companies moved in. By 2023, the Accelerator was home to 55 companies. Since then, the Accelerator’s team has done everything they could to continue to grow.

    “At one point, one of our team members came to me with her tail between her legs and sheepishly said, ‘I gave our office space to a startup,’” Knight recalls. “I said, ‘Yes! That means you get it! We don’t need an office — we can sit anywhere.’”

    The first floor holds some of the largest machinery, including that molten salt device (developed by Mantel Capture) and the quantum computer (developed by Atlantic Quantum). On the next level, a machine shop and a fabrication space featuring every 3D printer imaginable offer ways for companies to quickly build prototype products or parts. Another floor is dubbed “the Avenue” and features a kitchen and tables for networking and serendipitous meetings. The Avenue is lined by huge garage doors that open to accommodate larger crowds for workshops and meeting spaces.

    “Even though the founders are working in different spaces, we wanted to create an area where people can connect and run into each other and get help with 3D printing or hiring or anything else,” Knight says. “It fosters those casual interactions that are very important for startups.”

    An ecosystem to change the world

    Only about one-fifth of the companies in the Accelerator space are portfolio companies of Engine Ventures. The two entities operate separately, but they pool their shared learning about supporting tough tech, and Engine Ventures has an office in the Accelerator’s space.

    Engine Ventures CEO Katie Rae sees it as a symbiotic partnership.

    “We needed to have all these robust services for everyone in tough tech, not just the portfolio companies,” Rae says. “We’ll always work together and produce the Tough Tech Summit together because of our overarching missions. It’s very much like a rising tide lifts all boats. All of these companies are working to change the world in their own verticals, so we’re just focusing on the impact they’re trying to have and making that the story.”

    Rae says MIT has helped both of The Engine’s teams think through the best way to support tough tech startups.

    “Being a partner with MIT, which understands innovation and safety better than anyone, has allowed us to say yes to more things and have more flexibility,” Rae says. “If you’re going to go at breakneck speed to solve global problems, you better have a mentality of getting things done fast and safely, and I think that’s been a core tenet of The Engine.”

    Meanwhile, Knight says her team hasn’t stopped learning from the tough tech community and will continue to adapt.

    “There’s just a waterfall of information coming from these companies,” Knight says. “It’s about iterating on our services to best support them, so we can go to people on our team and ask, ‘Can you learn to run this type of program, because we just learned these five founders need it?’ Every founder we know in the area has a badge so they can come in. We want to create a hub for tough tech within this Kendall Square area that’s already a hub in so many ways.” More

  • in

    Shining a light on oil fields to make them more sustainable

    Operating an oil field is complex and there is a staggeringly long list of things that can go wrong.

    One of the most common problems is spills of the salty brine that’s a toxic byproduct of pumping oil. Another is over- or under-pumping that can lead to machine failure and methane leaks. (The oil and gas industry is the largest industrial emitter of methane in the U.S.) Then there are extreme weather events, which range from winter frosts to blazing heat, that can put equipment out of commission for months. One of the wildest problems Sebastien Mannai SM ’14, PhD ’18 has encountered are hogs that pop open oil tanks with their snouts to enjoy on-demand oil baths.

    Mannai helps oil field owners detect and respond to these problems while optimizing the operation of their machinery to prevent the issues from occurring in the first place. He is the founder and CEO of Amplified Industries, a company selling oil field monitoring and control tools that help make the industry more efficient and sustainable.

    Amplified Industries’ sensors and analytics give oil well operators real-time alerts when things go wrong, allowing them to respond to issues before they become disasters.

    “We’re able to find 99 percent of the issues affecting these machines, from mechanical failures to human errors, including issues happening thousands of feet underground,” Mannai explains. “With our AI solution, operators can put the wells on autopilot, and the system automatically adjusts or shuts the well down as soon as there’s an issue.”

    Amplified currently works with private companies in states spanning from Texas to Wyoming, that own and operate as many as 3,000 wells. Such companies make up the majority of oil well operators in the U.S. and operate both new and older, more failure-prone equipment that has been in the field for decades.

    Such operators also have a harder time responding to environmental regulations like the Environmental Protection Agency’s new methane guidelines, which seek to dramatically reduce emissions of the potent greenhouse gas in the industry over the next few years.

    “These operators don’t want to be releasing methane,” Mannai explains. “Additionally, when gas gets into the pumping equipment, it leads to premature failures. We can detect gas and slow the pump down to prevent it. It’s the best of both worlds: The operators benefit because their machines are working better, saving them money while also giving them a smaller environmental footprint with fewer spills and methane leaks.”

    Leveraging “every MIT resource I possibly could”

    Mannai learned about the cutting-edge technology used in the space and aviation industries as he pursued his master’s degree at the Gas Turbine Laboratory in MIT’s Department of Aeronautics and Astronautics. Then, during his PhD at MIT, he worked with an oil services company and discovered the oil and gas industry was still relying on decades-old technologies and equipment.

    “When I first traveled to the field, I could not believe how old-school the actual operations were,” says Mannai, who has previously worked in rocket engine and turbine factories. “A lot of oil wells have to be adjusted by feel and rules of thumb. The operators have been let down by industrial automation and data companies.”

    Monitoring oil wells for problems typically requires someone in a pickup truck to drive hundreds of miles between wells looking for obvious issues, Mannai says. The sensors that are deployed are expensive and difficult to replace. Over time, they’re also often damaged in the field to the point of being unusable, forcing technicians to make educated guesses about the status of each well.

    “We often see that equipment unplugged or programmed incorrectly because it is incredibly over-complicated and ill-designed for the reality of the field,” Mannai says. “Workers on the ground often have to rip it out and bypass the control system to pump by hand. That’s how you end up with so many spills and wells pumping at suboptimal levels.”

    To build a better oil field monitoring system, Mannai received support from the MIT Sandbox Innovation Fund and the Venture Mentoring Service (VMS). He also participated in the delta V summer accelerator at the Martin Trust Center for MIT Entrepreneurship, the fuse program during IAP, and the MIT I-Corps program, and took a number of classes at the MIT Sloan School of Management. In 2019, Amplified Industries — which operated under the name Acoustic Wells until recently — won the MIT $100K Entrepreneurship competition.

    “My approach was to sign up to every possible entrepreneurship related program and to leverage every MIT resource I possibly could,” Mannai says. “MIT was amazing for us.”

    Mannai officially launched the company after his postdoc at MIT, and Amplified raised its first round of funding in early 2020. That year, Amplified’s small team moved into the Greentown Labs startup incubator in Somerville.

    Mannai says building the company’s battery-powered, low-cost sensors was a huge challenge. The sensors run machine-learning inference models and their batteries last for 10 years. They also had to be able to handle extreme conditions, from the scorching hot New Mexico desert to the swamps of Louisiana and the freezing cold winters in North Dakota.

    “We build very rugged, resilient hardware; it’s a must in those environments” Mannai says. “But it’s also very simple to deploy, so if a device does break, it’s like changing a lightbulb: We ship them a new one and it takes them a couple of minutes to swap it out.”

    Customers equip each well with four or five of Amplified’s sensors, which attach to the well’s cables and pipes to measure variables like tension, pressure, and amps. Vast amounts of data are then sent to Amplified’s cloud and processed by their analytics engine. Signal processing methods and AI models are used to diagnose problems and control the equipment in real-time, while generating notifications for the operators when something goes wrong. Operators can then remotely adjust the well or shut it down.

    “That’s where AI is important, because if you just record everything and put it in a giant dashboard, you create way more work for people,” Mannai says. “The critical part is the ability to process and understand this newly recorded data and make it readily usable in the real world.”

    Amplified’s dashboard is customized for different people in the company, so field technicians can quickly respond to problems and managers or owners can get a high-level view of how everything is running.

    Mannai says often when Amplified’s sensors are installed, they’ll immediately start detecting problems that were unknown to engineers and technicians in the field. To date, Amplified has prevented hundreds of thousands of gallons worth of brine water spills, which are particularly damaging to surrounding vegetation because of their high salt and sulfur content.

    Preventing those spills is only part of Amplified’s positive environmental impact; the company is now turning its attention toward the detection of methane leaks.

    Helping a changing industry

    The EPA’s proposed new Waste Emissions Charge for oil and gas companies would start at $900 per metric ton of reported methane emissions in 2024 and increase to $1,500 per metric ton in 2026 and beyond.

    Mannai says Amplified is well-positioned to help companies comply with the new rules. Its equipment has already showed it can detect various kinds of leaks across the field, purely based on analytics of existing data.

    “Detecting methane leaks typically requires someone to walk around every valve and piece of piping with a thermal camera or sniffer, but these operators often have thousands of valves and hundreds of miles of pipes,” Mannai says. “What we see in the field is that a lot of times people don’t know where the pipes are because oil wells change owners so frequently, or they will miss an intermittent leak.”

    Ultimately Mannai believes a strong data backend and modernized sensing equipment will become the backbone of the industry, and is a necessary prerequisite to both improving efficiency and cleaning up the industry.

    “We’re selling a service that ensures your equipment is working optimally all the time,” Mannai says. “That means a lot fewer fines from the EPA, but it also means better-performing equipment. There’s a mindset change happening across the industry, and we’re helping make that transition as easy and affordable as possible.” More

  • in

    Making the clean energy transition work for everyone

    The clean energy transition is already underway, but how do we make sure it happens in a manner that is affordable, sustainable, and fair for everyone?

    That was the overarching question at this year’s MIT Energy Conference, which took place March 11 and 12 in Boston and was titled “Short and Long: A Balanced Approach to the Energy Transition.”

    Each year, the student-run conference brings together leaders in the energy sector to discuss the progress and challenges they see in their work toward a greener future. Participants come from research, industry, government, academia, and the investment community to network and exchange ideas over two whirlwind days of keynote talks, fireside chats, and panel discussions.

    Several participants noted that clean energy technologies are already cost-competitive with fossil fuels, but changing the way the world works requires more than just technology.

    “None of this is easy, but I think developing innovative new technologies is really easy compared to the things we’re talking about here, which is how to blend social justice, soft engineering, and systems thinking that puts people first,” Daniel Kammen, a distinguished professor of energy at the University of California at Berkeley, said in a keynote talk. “While clean energy has a long way to go, it is more than ready to transition us from fossil fuels.”

    The event also featured a keynote discussion between MIT President Sally Kornbluth and MIT’s Kyocera Professor of Ceramics Yet-Ming Chiang, in which Kornbluth discussed her first year at MIT as well as a recently announced, campus-wide effort to solve critical climate problems known as the Climate Project at MIT.

    “The reason I wanted to come to MIT was I saw that MIT has the potential to solve the world’s biggest problems, and first among those for me was the climate crisis,” Kornbluth said. “I’m excited about where we are, I’m excited about the enthusiasm of the community, and I think we’ll be able to make really impactful discoveries through this project.”

    Fostering new technologies

    Several panels convened experts in new or emerging technology fields to discuss what it will take for their solutions to contribute to deep decarbonization.

    “The fun thing and challenging thing about first-of-a-kind technologies is they’re all kind of different,” said Jonah Wagner, principal assistant director for industrial innovation and clean energy in the U.S. Office of Science and Technology Policy. “You can map their growth against specific challenges you expect to see, but every single technology is going to face their own challenges, and every single one will have to defy an engineering barrier to get off the ground.”

    Among the emerging technologies discussed was next-generation geothermal energy, which uses new techniques to extract heat from the Earth’s crust in new places.

    A promising aspect of the technology is that it can leverage existing infrastructure and expertise from the oil and gas industry. Many newly developed techniques for geothermal production, for instance, use the same drills and rigs as those used for hydraulic fracturing.

    “The fact that we have a robust ecosystem of oil and gas labor and technology in the U.S. makes innovation in geothermal much more accessible compared to some of the challenges we’re seeing in nuclear or direct-air capture, where some of the supply chains are disaggregated around the world,” said Gabrial Malek, chief of staff at the geothermal company Fervo Energy.

    Another technology generating excitement — if not net energy quite yet — is fusion, the process of combining, or fusing, light atoms together to form heavier ones for a net energy gain, in the same process that powers the sun. MIT spinout Commonwealth Fusion Systems (CFS) has already validated many aspects of its approach for achieving fusion power, and the company’s unique partnership with MIT was discussed in a panel on the industry’s progress.

    “We’re standing on the shoulders of decades of research from the scientific community, and we want to maintain those ties even as we continue developing our technology,” CFS Chief Science Officer Brandon Sorbom PhD ’17 said, noting that CFS is one of the largest company sponsors of research at MIT and collaborates with institutions around the world. “Engaging with the community is a really valuable lever to get new ideas and to sanity check our own ideas.”

    Sorbom said that as CFS advances fusion energy, the company is thinking about how it can replicate its processes to lower costs and maximize the technology’s impact around the planet.

    “For fusion to work, it has to work for everyone,” Sorbom said. “I think the affordability piece is really important. We can’t just build this technological jewel that only one class of nations can afford. It has to be a technology that can be deployed throughout the entire world.”

    The event also gave students — many from MIT — a chance to learn more about careers in energy and featured a startup showcase, in which dozens of companies displayed their energy and sustainability solutions.

    “More than 700 people are here from every corner of the energy industry, so there are so many folks to connect with and help me push my vision into reality,” says GreenLIB CEO Fred Rostami, whose company recycles lithium-ion batteries. “The good thing about the energy transition is that a lot of these technologies and industries overlap, so I think we can enable this transition by working together at events like this.”

    A focused climate strategy

    Kornbluth noted that when she came to MIT, a large percentage of students and faculty were already working on climate-related technologies. With the Climate Project at MIT, she wanted to help ensure the whole of those efforts is greater than the sum of its parts.

    The project is organized around six distinct missions, including decarbonizing energy and industry, empowering frontline communities, and building healthy, resilient cities. Kornbluth says the mission areas will help MIT community members collaborate around multidisciplinary challenges. Her team, which includes a committee of faculty advisors, has begun to search for the leads of each mission area, and Kornbluth said she is planning to appoint a vice president for climate at the Institute.

    “I want someone who has the purview of the whole Institute and will report directly to me to help make sure this project stays on track,” Kornbluth explained.

    In his conversation about the initiative with Kornbluth, Yet-Ming Chiang said projects will be funded based on their potential to reduce emissions and make the planet more sustainable at scale.

    “Projects should be very high risk, with very high impact,” Chiang explained. “They should have a chance to prove themselves, and those efforts should not be limited by resources, only by time.”

    In discussing her vision of the climate project, Kornbluth alluded to the “short and long” theme of the conference.

    “It’s about balancing research and commercialization,” Kornbluth said. “The climate project has a very variable timeframe, and I think universities are the sector that can think about the things that might be 30 years out. We have to think about the incentives across the entire innovation pipeline and how we can keep an eye on the long term while making sure the short-term things get out rapidly.” More

  • in

    Reducing pesticide use while increasing effectiveness

    Farming can be a low-margin, high-risk business, subject to weather and climate patterns, insect population cycles, and other unpredictable factors. Farmers need to be savvy managers of the many resources they deal, and chemical fertilizers and pesticides are among their major recurring expenses.

    Despite the importance of these chemicals, a lack of technology that monitors and optimizes sprays has forced farmers to rely on personal experience and rules of thumb to decide how to apply these chemicals. As a result, these chemicals tend to be over-sprayed, leading to their runoff into waterways and buildup up in the soil.

    That could change, thanks to a new approach of feedback-optimized spraying, invented by AgZen, an MIT spinout founded in 2020 by Professor Kripa Varanasi and Vishnu Jayaprakash SM ’19, PhD ’22.

    Play video

    AgZen has developed a system for farming that can monitor exactly how much of the sprayed chemicals adheres to plants, in real time, as the sprayer drives through a field. Built-in software running on a tablet shows the operator exactly how much of each leaf has been covered by the spray.

    Over the past decade, AgZen’s founders have developed products and technologies to control the interactions of droplets and sprays with plant surfaces. The Boston-based venture-backed company launched a new commercial product in 2024 and is currently piloting another related product. Field tests of both have shown the products can help farmers spray more efficiently and effectively, using fewer chemicals overall.

    “Worldwide, farms spend approximately $60 billion a year on pesticides. Our objective is to reduce the number of pesticides sprayed and lighten the financial burden on farms without sacrificing effective pest management,” Varanasi says.

    Getting droplets to stick

    While the world pesticide market is growing rapidly, a lot of the pesticides sprayed don’t reach their target. A significant portion bounces off the plant surfaces, lands on the ground, and becomes part of the runoff that flows to streams and rivers, often causing serious pollution. Some of these pesticides can be carried away by wind over very long distances.

    “Drift, runoff, and poor application efficiency are well-known, longstanding problems in agriculture, but we can fix this by controlling and monitoring how sprayed droplets interact with leaves,” Varanasi says.

    With support from MIT Tata Center and the Abdul Latif Jameel Water and Food Systems Lab, Varanasi and his team analyzed how droplets strike plant surfaces, and explored ways to increase application efficiency. This research led them to develop a novel system of nozzles that cloak droplets with compounds that enhance the retention of droplets on the leaves, a product they call EnhanceCoverage.

    Field studies across regions — from Massachusetts to California to Italy and France —showed that this droplet-optimization system could allow farmers to cut the amount of chemicals needed by more than half because more of the sprayed substances would stick to the leaves.

    Measuring coverage

    However, in trying to bring this technology to market, the researchers faced a sticky problem: Nobody knew how well pesticide sprays were adhering to the plants in the first place, so how could AgZen say that the coverage was better with its new EnhanceCoverage system?

    “I had grown up spraying with a backpack on a small farm in India, so I knew this was an issue,” Jayaprakash says. “When we spoke to growers, they told me how complicated spraying is when you’re on a large machine. Whenever you spray, there are so many things that can influence how effective your spray is. How fast do you drive the sprayer? What flow rate are you using for the chemicals? What chemical are you using? What’s the age of the plants, what’s the nozzle you’re using, what is the weather at the time? All these things influence agrochemical efficiency.”

    Agricultural spraying essentially comes down to dissolving a chemical in water and then spraying droplets onto the plants. “But the interaction between a droplet and the leaf is complex,” Varanasi says. “We were coming in with ways to optimize that, but what the growers told us is, hey, we’ve never even really looked at that in the first place.”

    Although farmers have been spraying agricultural chemicals on a large scale for about 80 years, they’ve “been forced to rely on general rules of thumb and pick all these interlinked parameters, based on what’s worked for them in the past. You pick a set of these parameters, you go spray, and you’re basically praying for outcomes in terms of how effective your pest control is,” Varanasi says.

    Before AgZen could sell farmers on the new system to improve droplet coverage, the company had to invent a way to measure precisely how much spray was adhering to plants in real-time.

    Comparing before and after

    The system they came up with, which they tested extensively on farms across the country last year, involves a unit that can be bolted onto the spraying arm of virtually any sprayer. It carries two sensor stacks, one just ahead of the sprayer nozzles and one behind. Then, built-in software running on a tablet shows the operator exactly how much of each leaf has been covered by the spray. It also computes how much those droplets will spread out or evaporate, leading to a precise estimate of the final coverage.

    “There’s a lot of physics that governs how droplets spread and evaporate, and this has been incorporated into software that a farmer can use,” Varanasi says. “We bring a lot of our expertise into understanding droplets on leaves. All these factors, like how temperature and humidity influence coverage, have always been nebulous in the spraying world. But now you have something that can be exact in determining how well your sprays are doing.”

    “We’re not only measuring coverage, but then we recommend how to act,” says Jayaprakash, who is AgZen’s CEO. “With the information we collect in real-time and by using AI, RealCoverage tells operators how to optimize everything on their sprayer, from which nozzle to use, to how fast to drive, to how many gallons of spray is best for a particular chemical mix on a particular acre of a crop.”

    The tool was developed to prove how much AgZen’s EnhanceCoverage nozzle system (which will be launched in 2025) improves coverage. But it turns out that monitoring and optimizing droplet coverage on leaves in real-time with this system can itself yield major improvements.

    “We worked with large commercial farms last year in specialty and row crops,” Jayaprakash says. “When we saved our pilot customers up to 50 percent of their chemical cost at a large scale, they were very surprised.” He says the tool has reduced chemical costs and volume in fallow field burndowns, weed control in soybeans, defoliation in cotton, and fungicide and insecticide sprays in vegetables and fruits. Along with data from commercial farms, field trials conducted by three leading agricultural universities have also validated these results.

    “Across the board, we were able to save between 30 and 50 percent on chemical costs and increase crop yields by enabling better pest control,” Jayaprakash says. “By focusing on the droplet-leaf interface, our product can help any foliage spray throughout the year, whereas most technological advancements in this space recently have been focused on reducing herbicide use alone.” The company now intends to lease the system across thousands of acres this year.

    And these efficiency gains can lead to significant returns at scale, he emphasizes: In the U.S., farmers currently spend $16 billion a year on chemicals, to protect about $200 billion of crop yields.

    The company launched its first product, the coverage optimization system called RealCoverage, this year, reaching a wide variety of farms with different crops and in different climates. “We’re going from proof-of-concept with pilots in large farms to a truly massive scale on a commercial basis with our lease-to-own program,” Jayaprakash says.

    “We’ve also been tapped by the USDA to help them evaluate practices to minimize pesticides in watersheds,” Varanasi says, noting that RealCoverage can also be useful for regulators, chemical companies, and agricultural equipment manufacturers.

    Once AgZen has proven the effectiveness of using coverage as a decision metric, and after the RealCoverage optimization system is widely in practice, the company will next roll out its second product, EnhanceCoverage, designed to maximize droplet adhesion. Because that system will require replacing all the nozzles on a sprayer, the researchers are doing pilots this year but will wait for a full rollout in 2025, after farmers have gained experience and confidence with their initial product.

    “There is so much wastage,” Varanasi says. “Yet farmers must spray to protect crops, and there is a lot of environmental impact from this. So, after all this work over the years, learning about how droplets stick to surfaces and so on, now the culmination of it in all these products for me is amazing, to see all this come alive, to see that we’ll finally be able to solve the problem we set out to solve and help farmers.” More

  • in

    Power when the sun doesn’t shine

    In 2016, at the huge Houston energy conference CERAWeek, MIT materials scientist Yet-Ming Chiang found himself talking to a Tesla executive about a thorny problem: how to store the output of solar panels and wind turbines for long durations.        

    Chiang, the Kyocera Professor of Materials Science and Engineering, and Mateo Jaramillo, a vice president at Tesla, knew that utilities lacked a cost-effective way to store renewable energy to cover peak levels of demand and to bridge the gaps during windless and cloudy days. They also knew that the scarcity of raw materials used in conventional energy storage devices needed to be addressed if renewables were ever going to displace fossil fuels on the grid at scale.

    Energy storage technologies can facilitate access to renewable energy sources, boost the stability and reliability of power grids, and ultimately accelerate grid decarbonization. The global market for these systems — essentially large batteries — is expected to grow tremendously in the coming years. A study by the nonprofit LDES (Long Duration Energy Storage) Council pegs the long-duration energy storage market at between 80 and 140 terawatt-hours by 2040. “That’s a really big number,” Chiang notes. “Every 10 people on the planet will need access to the equivalent of one EV [electric vehicle] battery to support their energy needs.”

    In 2017, one year after they met in Houston, Chiang and Jaramillo joined forces to co-found Form Energy in Somerville, Massachusetts, with MIT graduates Marco Ferrara SM ’06, PhD ’08 and William Woodford PhD ’13, and energy storage veteran Ted Wiley.

    “There is a burgeoning market for electrical energy storage because we want to achieve decarbonization as fast and as cost-effectively as possible,” says Ferrara, Form’s senior vice president in charge of software and analytics.

    Investors agreed. Over the next six years, Form Energy would raise more than $800 million in venture capital.

    Bridging gaps

    The simplest battery consists of an anode, a cathode, and an electrolyte. During discharge, with the help of the electrolyte, electrons flow from the negative anode to the positive cathode. During charge, external voltage reverses the process. The anode becomes the positive terminal, the cathode becomes the negative terminal, and electrons move back to where they started. Materials used for the anode, cathode, and electrolyte determine the battery’s weight, power, and cost “entitlement,” which is the total cost at the component level.

    During the 1980s and 1990s, the use of lithium revolutionized batteries, making them smaller, lighter, and able to hold a charge for longer. The storage devices Form Energy has devised are rechargeable batteries based on iron, which has several advantages over lithium. A big one is cost.

    Chiang once declared to the MIT Club of Northern California, “I love lithium-ion.” Two of the four MIT spinoffs Chiang founded center on innovative lithium-ion batteries. But at hundreds of dollars a kilowatt-hour (kWh) and with a storage capacity typically measured in hours, lithium-ion was ill-suited for the use he now had in mind.

    The approach Chiang envisioned had to be cost-effective enough to boost the attractiveness of renewables. Making solar and wind energy reliable enough for millions of customers meant storing it long enough to fill the gaps created by extreme weather conditions, grid outages, and when there is a lull in the wind or a few days of clouds.

    To be competitive with legacy power plants, Chiang’s method had to come in at around $20 per kilowatt-hour of stored energy — one-tenth the cost of lithium-ion battery storage.

    But how to transition from expensive batteries that store and discharge over a couple of hours to some as-yet-undefined, cheap, longer-duration technology?

    “One big ball of iron”

    That’s where Ferrara comes in. Ferrara has a PhD in nuclear engineering from MIT and a PhD in electrical engineering and computer science from the University of L’Aquila in his native Italy. In 2017, as a research affiliate at the MIT Department of Materials Science and Engineering, he worked with Chiang to model the grid’s need to manage renewables’ intermittency.

    How intermittent depends on where you are. In the United States, for instance, there’s the windy Great Plains; the sun-drenched, relatively low-wind deserts of Arizona, New Mexico, and Nevada; and the often-cloudy Pacific Northwest.

    Ferrara, in collaboration with Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society and her MIT team, modeled four representative locations in the United States and concluded that energy storage with capacity costs below roughly $20/kWh and discharge durations of multiple days would allow a wind-solar mix to provide cost-competitive, firm electricity in resource-abundant locations.

    Now that they had a time frame, they turned their attention to materials. At the price point Form Energy was aiming for, lithium was out of the question. Chiang looked at plentiful and cheap sulfur. But a sulfur, sodium, water, and air battery had technical challenges.

    Thomas Edison once used iron as an electrode, and iron-air batteries were first studied in the 1960s. They were too heavy to make good transportation batteries. But this time, Chiang and team were looking at a battery that sat on the ground, so weight didn’t matter. Their priorities were cost and availability.

    “Iron is produced, mined, and processed on every continent,” Chiang says. “The Earth is one big ball of iron. We wouldn’t ever have to worry about even the most ambitious projections of how much storage that the world might use by mid-century.” If Form ever moves into the residential market, “it’ll be the safest battery you’ve ever parked at your house,” Chiang laughs. “Just iron, air, and water.”

    Scientists call it reversible rusting. While discharging, the battery takes in oxygen and converts iron to rust. Applying an electrical current converts the rusty pellets back to iron, and the battery “breathes out” oxygen as it charges. “In chemical terms, you have iron, and it becomes iron hydroxide,” Chiang says. “That means electrons were extracted. You get those electrons to go through the external circuit, and now you have a battery.”

    Form Energy’s battery modules are approximately the size of a washer-and-dryer unit. They are stacked in 40-foot containers, and several containers are electrically connected with power conversion systems to build storage plants that can cover several acres.

    The right place at the right time

    The modules don’t look or act like anything utilities have contracted for before.

    That’s one of Form’s key challenges. “There is not widespread knowledge of needing these new tools for decarbonized grids,” Ferrara says. “That’s not the way utilities have typically planned. They’re looking at all the tools in the toolkit that exist today, which may not contemplate a multi-day energy storage asset.”

    Form Energy’s customers are largely traditional power companies seeking to expand their portfolios of renewable electricity. Some are in the process of decommissioning coal plants and shifting to renewables.

    Ferrara’s research pinpointing the need for very low-cost multi-day storage provides key data for power suppliers seeking to determine the most cost-effective way to integrate more renewable energy.

    Using the same modeling techniques, Ferrara and team show potential customers how the technology fits in with their existing system, how it competes with other technologies, and how, in some cases, it can operate synergistically with other storage technologies.

    “They may need a portfolio of storage technologies to fully balance renewables on different timescales of intermittency,” he says. But other than the technology developed at Form, “there isn’t much out there, certainly not within the cost entitlement of what we’re bringing to market.”  Thanks to Chiang and Jaramillo’s chance encounter in Houston, Form has a several-year lead on other companies working to address this challenge. 

    In June 2023, Form Energy closed its biggest deal to date for a single project: Georgia Power’s order for a 15-megawatt/1,500-megawatt-hour system. That order brings Form’s total amount of energy storage under contracts with utility customers to 40 megawatts/4 gigawatt-hours. To meet the demand, Form is building a new commercial-scale battery manufacturing facility in West Virginia.

    The fact that Form Energy is creating jobs in an area that lost more than 10,000 steel jobs over the past decade is not lost on Chiang. “And these new jobs are in clean tech. It’s super exciting to me personally to be doing something that benefits communities outside of our traditional technology centers.

    “This is the right time for so many reasons,” Chiang says. He says he and his Form Energy co-founders feel “tremendous urgency to get these batteries out into the world.”

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    3 Questions: The Climate Project at MIT

    MIT is preparing a major campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems now impeding an effective global climate response. The Climate Project at MIT, as the new enterprise is known, includes new arrangements for promoting cross-Institute collaborations and new mechanisms for engaging with outside partners to speed the development and implementation of climate solutions.

    MIT News spoke with Richard K. Lester, MIT’s vice provost for international activities, who has helped oversee the development of the project.

    Q: What is the Climate Project at MIT?

    A: In her inaugural address last May, President Kornbluth called on the MIT community to join her in a “bold, tenacious response” to climate change. The Climate Project at MIT is a response to that call. It aims to mobilize every part of MIT to develop, deliver, and scale up practical climate solutions, as quickly as possible.

    Play video

    At MIT, well over 300 of our faculty are already working with their students and research staff members on different aspects of the climate problem. Almost all of our academic departments and more than a score of our interdepartmental labs and centers are involved in some way. What they are doing is remarkable, and this decentralized structure reflects the best traditions of MIT as a “bottom up,” entrepreneurial institution. But, as President Kornbluth said, we must do much more. We must be bolder in our research choices and more creative in how we organize ourselves to work with each other and with our partners. The purpose of the Climate Project is to support our community’s efforts to do bigger things faster in the climate domain. We will have succeeded if our work changes the trajectory of global climate outcomes for the better.

    I want to be clear that the clay is still wet here. The Climate Project will continue to take shape as more members of the MIT community bring their excellence, their energy, and their ambition to bear on the climate challenge. But I believe we have a vision and a framework for accelerating and amplifying MIT’s real-world climate impact, and I know that President Kornbluth is eager to share this progress report with the MIT community now to convey the breadth and ambition of what we’re planning.

    Q: How will the project be organized?

    A: The Climate Project will have three core components: the Climate Missions; their offshoots, the Climate Frontier Projects; and Climate HQ. A new vice president for climate will lead the enterprise.

    Initially there will be six missions, which you can read about in the plan. Each will address a different domain of climate impact where new solutions are required and where a critical mass of research excellence exists at MIT. One such mission, of course, is to decarbonize energy and industry, an area where we estimate that about 150 of our faculty are already working.

    The mission leaders will build multidisciplinary problem-solving communities reaching across the Institute and beyond. Each of these will be charged with roadmapping and assessing progress toward its mission, identifying critical gaps and bottlenecks, and launching applied research projects to accelerate progress where the MIT community and our partners are well-positioned to achieve impactful results. These projects — the climate frontier projects — will benefit from active, professional project management, with clear metrics and milestones. We are in a critical decade for responding to climate change, so it’s important that these research projects move quickly, with an eye on producing real-world results.

    The new Climate HQ will drive the overall vision for the Climate Project and support the work of the missions. We’ve talked about a core focus on impact-driven research, but much is still unknown about the Earth’s physical and biogeochemical systems, and there is also much to be learned about the behavior of the social and political systems that led us to the very difficult situation the world now faces. Climate HQ will support fundamental research in the scientific and humanistic disciplines related to climate, and will promote engagement between these disciplines and the missions. We must also advance climate-related education, led by departments and programs, as well as policy work, public outreach, and more, including an MIT-wide student-centric Climate Corps to elevate climate-related, community-focused service in MIT’s culture.

    Q: Why are partners a key part of this project?

    A: It is important to build strong partners right from the very start for our innovations, inventions, and discoveries to have any prospect of achieving scale. And in many cases, with climate change, it’s all about scale.

    One of the aims of this initiative is to strengthen MIT’s climate “scaffolding” — the people and processes connecting what we do on campus to the practical world of climate impact and response. We can build on MIT’s highly developed infrastructure for translation, innovation, and entrepreneurship, even as we promote other important pathways to scale involving communities, municipalities, and other not-for-profit organizations. Working with all these different organizations will help us build a broad infrastructure to help us get traction in the world. On a related note, the Sloan School of Management will be sharing details in the coming days of an exciting new effort to enhance MIT’s contributions in the climate policy arena.

    MIT is committing $75 million, including $25 million from Sloan, at the outset of the project. But we anticipate developing new partnerships, including philanthropic partnerships, to increase that scope dramatically. More

  • in

    MADMEC winner creates “temporary tattoos” for T-shirts

    Have you ever gotten a free T-shirt at an event that you never wear? What about a music or sports-themed shirt you wear to one event and then lose interest in entirely? Such one-off T-shirts — and the waste and pollution associated with them — are an unfortunately common part of our society.

    But what if you could change the designs on shirts after each use? The winners of this year’s MADMEC competition developed biodegradable “temporary tattoos” for T-shirts to make one-wear clothing more sustainable.

    Members of the winning team, called Me-Shirts, got their inspiration from the MADMEC event itself, which ordinarily makes a different T-shirt each year.

    “If you think about all the textile waste that’s produced for all these shirts, it’s insane,” team member and PhD candidate Isabella Caruso said in the winning presentation. “The main markets we are trying to address are for one-time T-shirts and custom T-shirts.”

    The problem is a big one. According to the team, the custom T-shirt market is a $4.3 billion industry. That doesn’t include trends like fast fashion that contribute to the 17 million tons of textile waste produced each year.

    “Our proposed solution is a temporary shirt tattoo made from biodegradable, nontoxic materials,” Caruso explained. “We wanted designs that are fully removable through washing, so that you can wear your T-shirt for your one-time event and then get a nice white T-shirt back afterward.”

    The team’s scalable design process mixes three simple ingredients: potato starch, glycerin, and water. The design can be imprinted on the shirt temporarily through ironing.

    The Me-Shirt team, which earned $10,000 with the win, plans to continue exploring material combinations to make the design more flexible and easier for people to apply at home. Future iterations could allow users to decide if they want the design to stay on the shirt during washes based on the settings of the washing machine.

    Hosted by MIT’s Department of Materials Science and Engineering (DMSE), the competition was the culmination of team projects that began in the fall and included a series of design challenges throughout the semester. Each team received guidance, access to equipment and labs, and up to $1,000 in funding to build and test their prototypes.

    “The main goal is that they gained some confidence in their ability to design and build devices and platforms that are different from their normal experiences,” Mike Tarkanian, a senior lecturer in DMSE and coordinator of MADMEC, said at the event. “If it’s a departure from their normal research and coursework activities that’s a win, I think, to make them better engineers.”

    The second-place, $6,000 prize went to Alkalyne, which is creating a carbon-neutral polymer for petrochemical production. The company is developing approaches for using electricity and inorganic carbon to generate a high-energy hydrocarbon precursor. If developed using renewable energy, the approach could be used to achieve carbon negative petrochemical production.

    “A lot of our research, and a lot of the research around MIT in general, has to do with sustainability, so we wanted to try an angle that we think looks promising but doesn’t seem to be investigated enough,” PhD candidate Christopher Mallia explained.

    The third-place prize went to Microbeco, which is exploring the use of microbial fuel cells for continuous water quality monitoring. Microbes have been proposed as a way to detect and measure contaminants in water for decades, but the team believes the varying responses of microbes to different contaminants has limited the effectiveness of the approach.

    To overcome that problem, the team is working to isolate microbial strains that respond more regularly to specific contaminants.

    Overall, Tarkanian believes this year’s program was a success not only because of the final results presented at the competition, but because of the experience the students got along the way using equipment like laser cutters, 3D printers, and soldering irons. Many participants said they had never used that type of equipment before. They also said by working to build physical prototypes, the program helped make their coursework come to life.

    “It was a chance to try something new by applying my skills to a different environment,” PhD candidate Zachary Adams said. “I can see a lot of the concepts I learn in my classes through this work.” More

  • in

    New MIT.nano equipment to accelerate innovation in “tough tech” sectors

    A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

    The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

    MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

    “The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

    The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

    “We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

    Pushing the boundaries of innovation

    Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

    “This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

    Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

    “In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

    Scholvin predicts the equipment will lead to exponential growth in research opportunities.

    “I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

    Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

    “The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

    Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

    He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

    Fulfilling a mission

    MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

    “This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

    Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

    “We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.” More