More stories

  • in

    Study: Fusion energy could play a major role in the global response to climate change

    For many decades, fusion has been touted as the ultimate source of abundant, clean electricity. Now, as the world faces the need to reduce carbon emissions to prevent catastrophic climate change, making commercial fusion power a reality takes on new importance. In a power system dominated by low-carbon variable renewable energy sources (VREs) such as solar and wind, “firm” electricity sources are needed to kick in whenever demand exceeds supply — for example, when the sun isn’t shining or the wind isn’t blowing and energy storage systems aren’t up to the task. What is the potential role and value of fusion power plants (FPPs) in such a future electric power system — a system that is not only free of carbon emissions but also capable of meeting the dramatically increased global electricity demand expected in the coming decades?Working together for a year-and-a-half, investigators in the MIT Energy Initiative (MITEI) and the MIT Plasma Science and Fusion Center (PSFC) have been collaborating to answer that question. They found that — depending on its future cost and performance — fusion has the potential to be critically important to decarbonization. Under some conditions, the availability of FPPs could reduce the global cost of decarbonizing by trillions of dollars. More than 25 experts together examined the factors that will impact the deployment of FPPs, including costs, climate policy, operating characteristics, and other factors. They present their findings in a new report funded through MITEI and entitled “The Role of Fusion Energy in a Decarbonized Electricity System.”“Right now, there is great interest in fusion energy in many quarters — from the private sector to government to the general public,” says the study’s principal investigator (PI) Robert C. Armstrong, MITEI’s former director and the Chevron Professor of Chemical Engineering, Emeritus. “In undertaking this study, our goal was to provide a balanced, fact-based, analysis-driven guide to help us all understand the prospects for fusion going forward.” Accordingly, the study takes a multidisciplinary approach that combines economic modeling, electric grid modeling, techno-economic analysis, and more to examine important factors that are likely to shape the future deployment and utilization of fusion energy. The investigators from MITEI provided the energy systems modeling capability, while the PSFC participants provided the fusion expertise.Fusion technologies may be a decade away from commercial deployment, so the detailed technology and costs of future commercial FPPs are not known at this point. As a result, the MIT research team focused on determining what cost levels fusion plants must reach by 2050 to achieve strong market penetration and make a significant contribution to the decarbonization of global electricity supply in the latter half of the century.The value of having FPPs available on an electric grid will depend on what other options are available, so to perform their analyses, the researchers needed estimates of the future cost and performance of those options, including conventional fossil fuel generators, nuclear fission power plants, VRE generators, and energy storage technologies, as well as electricity demand for specific regions of the world. To find the most reliable data, they searched the published literature as well as results of previous MITEI and PSFC analyses.Overall, the analyses showed that — while the technology demands of harnessing fusion energy are formidable — so are the potential economic and environmental payoffs of adding this firm, low-carbon technology to the world’s portfolio of energy options.Perhaps the most remarkable finding is the “societal value” of having commercial FPPs available. “Limiting warming to 1.5 degrees C requires that the world invest in wind, solar, storage, grid infrastructure, and everything else needed to decarbonize the electric power system,” explains Randall Field, executive director of the fusion study and MITEI’s director of research. “The cost of that task can be far lower when FPPs are available as a source of clean, firm electricity.” And the benefit varies depending on the cost of the FPPs. For example, assuming that the cost of building a FPP is $8,000 per kilowatt (kW) in 2050 and falls to $4,300/kW in 2100, the global cost of decarbonizing electric power drops by $3.6 trillion. If the cost of a FPP is $5,600/kW in 2050 and falls to $3,000/kW in 2100, the savings from having the fusion plants available would be $8.7 trillion. (Those calculations are based on differences in global gross domestic product and assume a discount rate of 6 percent. The undiscounted value is about 20 times larger.)The goal of other analyses was to determine the scale of deployment worldwide at selected FPP costs. Again, the results are striking. For a deep decarbonization scenario, the total global share of electricity generation from fusion in 2100 ranges from less than 10 percent if the cost of fusion is high to more than 50 percent if the cost of fusion is low.Other analyses showed that the scale and timing of fusion deployment vary in different parts of the world. Early deployment of fusion can be expected in wealthy nations such as European countries and the United States that have the most aggressive decarbonization policies. But certain other locations — for example, India and the continent of Africa — will have great growth in fusion deployment in the second half of the century due to a large increase in demand for electricity during that time. “In the U.S. and Europe, the amount of demand growth will be low, so it’ll be a matter of switching away from dirty fuels to fusion,” explains Sergey Paltsev, deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “But in India and Africa, for example, the tremendous growth in overall electricity demand will be met with significant amounts of fusion along with other low-carbon generation resources in the later part of the century.”A set of analyses focusing on nine subregions of the United States showed that the availability and cost of other low-carbon technologies, as well as how tightly carbon emissions are constrained, have a major impact on how FPPs would be deployed and used. In a decarbonized world, FPPs will have the highest penetration in locations with poor diversity, capacity, and quality of renewable resources, and limits on carbon emissions will have a big impact. For example, the Atlantic and Southeast subregions have low renewable resources. In those subregions, wind can produce only a small fraction of the electricity needed, even with maximum onshore wind buildout. Thus, fusion is needed in those subregions, even when carbon constraints are relatively lenient, and any available FPPs would be running much of the time. In contrast, the Central subregion of the United States has excellent renewable resources, especially wind. Thus, fusion competes in the Central subregion only when limits on carbon emissions are very strict, and FPPs will typically be operated only when the renewables can’t meet demand.An analysis of the power system that serves the New England states provided remarkably detailed results. Using a modeling tool developed at MITEI, the fusion team explored the impact of using different assumptions about not just cost and emissions limits but even such details as potential land-use constraints affecting the use of specific VREs. This approach enabled them to calculate the FPP cost at which fusion units begin to be installed. They were also able to investigate how that “threshold” cost changed with changes in the cap on carbon emissions. The method can even show at what price FPPs begin to replace other specific generating sources. In one set of runs, they determined the cost at which FPPs would begin to displace floating platform offshore wind and rooftop solar.“This study is an important contribution to fusion commercialization because it provides economic targets for the use of fusion in the electricity markets,” notes Dennis G. Whyte, co-PI of the fusion study, former director of the PSFC, and the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. “It better quantifies the technical design challenges for fusion developers with respect to pricing, availability, and flexibility to meet changing demand in the future.”The researchers stress that while fission power plants are included in the analyses, they did not perform a “head-to-head” comparison between fission and fusion, because there are too many unknowns. Fusion and nuclear fission are both firm, low-carbon electricity-generating technologies; but unlike fission, fusion doesn’t use fissile materials as fuels, and it doesn’t generate long-lived nuclear fuel waste that must be managed. As a result, the regulatory requirements for FPPs will be very different from the regulations for today’s fission power plants — but precisely how they will differ is unclear. Likewise, the future public perception and social acceptance of each of these technologies cannot be projected, but could have a major influence on what generation technologies are used to meet future demand.The results of the study convey several messages about the future of fusion. For example, it’s clear that regulation can be a potentially large cost driver. This should motivate fusion companies to minimize their regulatory and environmental footprint with respect to fuels and activated materials. It should also encourage governments to adopt appropriate and effective regulatory policies to maximize their ability to use fusion energy in achieving their decarbonization goals. And for companies developing fusion technologies, the study’s message is clearly stated in the report: “If the cost and performance targets identified in this report can be achieved, our analysis shows that fusion energy can play a major role in meeting future electricity needs and achieving global net-zero carbon goals.” More

  • in

    MIT Energy and Climate Club mobilizes future leaders to address global climate issues

    One of MIT’s missions is helping to solve the world’s greatest problems — with a large focus on one of the most pressing topics facing the world today, climate change.The MIT Energy and Climate Club, (MITEC) formerly known as the MIT Energy Club, has been working since 2004 to inform and educate the entire MIT community about this urgent issue and other related matters.MITEC, one of the largest clubs on campus, has hundreds of active members from every major, including both undergraduate and graduate students. With a broad reach across the Institute, MITEC is the hub for thought leadership and relationship-building across campus.The club’s co-presidents Laurențiu Anton, doctoral candidate in electrical engineering and computer science; Rosie Keller, an MBA student in the MIT Sloan School of Management; and Thomas Lee, doctoral candidate in the Institute for Data, Systems, and Society, say that faculty, staff, and alumni are also welcome to join and interact with the continuously growing club.While they closely collaborate on all aspects of the club, each of the co-presidents has a focus area to support the student managing directors and vice presidents for several of the club’s committees. Keller oversees the External Relations, Social, Launchpad, and Energy and Climate Hackathon leadership teams. Lee supports the leadership team for next spring’s Energy Conference. He also assists the club treasurer on budget and finance and guides the industry Sponsorships team. Anton oversees marketing, community and education as well as the Energy and Climate Night and Energy and Climate Career Fair leadership teams.“We think of MITEC as the umbrella of all things related to energy and climate on campus. Our goal is to share actionable information and not just have discussions. We work with other organizations on campus, including the MIT Environmental Solutions Initiative, to bring awareness,” says Anton. “Our Community and Education team is currently working with the MIT ESI [Environmental Solutions Initiative] to create an ecosystem map that we’re excited to produce for the MIT community.”To share their knowledge and get more people interested in solving climate and energy problems, each year MITEC hosts a variety of events including the MIT Energy and Climate Night, the MIT Energy and Climate Hack, the MIT Energy and Climate Career Fair, and the MIT Energy Conference to be held next spring March 3-4. The club also offers students the opportunity to gain valuable work experience while engaging with top companies, such as Constellation Energy and GE Vernova, on real climate and energy issues through their Launchpad Program.Founded in 2006, the annual MIT Energy Conference is the largest student-run conference in North America focused on energy and climate issues, where hundreds of participants gather every year with the CEOs, policymakers, investors, and scholars at the forefront of the global energy transition.“The 2025 MIT Energy Conference’s theme is ‘Breakthrough to Deployment: Driving Climate Innovation to Market’ — which focuses on the importance of both cutting-edge research innovation as well as large-scale commercial deployment to successfully reach climate goals,” says Lee.Anton notes that the first of four MITEC flagship events the MIT Energy and Climate Night. This research symposium that takes place every year in the fall at the MIT Museum will be held on Nov. 8. The club invites a select number of keynote speakers and several dozen student posters. Guests are allowed to walk around and engage with students, and in return students get practice showcasing their research. The club’s career fair will take place in the spring semester, shortly after Independent Activities Period.MITEC also provides members opportunities to meet with companies that are working to improve the energy sector, which helps to slow down, as well as adapt to, the effects of climate change.“We recently went to Provincetown and toured Eversource’s battery energy storage facility. This helped open doors for club members,” says Keller. “The Provincetown battery helps address grid reliability problems after extreme storms on Cape Cod — which speaks to energy’s connection to both the mitigation and adaptation aspects of climate change,” adds Lee.“MITEC is also a great way to meet other students at MIT that you might not otherwise have a chance to,” says Keller.“We’d always welcome more undergraduate students to join MITEC. There are lots of leadership opportunities within the club for them to take advantage of and build their resumes. We also have good and growing collaboration between different centers on campus such as the Sloan Sustainability Initiative and the MIT Energy Initiative. They support us with resources, introductions, and help amplify what we’re doing. But students are the drivers of the club and set the agendas,” says Lee.All three co-presidents are excited to hear that MIT President Sally Kornbluth wants to bring climate change solutions to the next level, and that she recently launched The Climate Project at MIT to kick off the Institute’s major new effort to accelerate and scale up climate change solutions.“We look forward to connecting with the new directors of the Climate Project at MIT and Interim Vice President for Climate Change Richard Lester in the near future. We are eager to explore how MITEC can support and collaborate with the Climate Project at MIT,” says Anton.Lee, Keller, and Anton want MITEC to continue fostering solutions to climate issues. They emphasized that while individual actions like bringing your own thermos, using public transportation, or recycling are necessary, there’s a bigger picture to consider. They encourage the MIT community to think critically about the infrastructure and extensive supply chains behind the products everyone uses daily.“It’s not just about bringing a thermos; it’s also understanding the life cycle of that thermos, from production to disposal, and how our everyday choices are interconnected with global climate impacts,” says Anton.“Everyone should get involved with this worldwide problem. We’d like to see more people think about how they can use their careers for change. To think how they can navigate the type of role they can play — whether it’s in finance or on the technical side. I think exploring what that looks like as a career is also a really interesting way of thinking about how to get involved with the problem,” says Keller.“MITEC’s newsletter reaches more than 4,000 people. We’re grateful that so many people are interested in energy and climate change,” says Anton. More

  • in

    The changing geography of “energy poverty”

    A growing portion of Americans who are struggling to pay for their household energy live in the South and Southwest, reflecting a climate-driven shift away from heating needs and toward air conditioning use, an MIT study finds.The newly published research also reveals that a major U.S. federal program that provides energy subsidies to households, by assigning block grants to states, does not yet fully match these recent trends.The work evaluates the “energy burden” on households, which reflects the percentage of income needed to pay for energy necessities, from 2015 to 2020. Households with an energy burden greater than 6 percent of income are considered to be in “energy poverty.” With climate change, rising temperatures are expected to add financial stress in the South, where air conditioning is increasingly needed. Meanwhile, milder winters are expected to reduce heating costs in some colder regions.“From 2015 to 2020, there is an increase in burden generally, and you do also see this southern shift,” says Christopher Knittel, an MIT energy economist and co-author of a new paper detailing the study’s results. About federal aid, he adds, “When you compare the distribution of the energy burden to where the money is going, it’s not aligned too well.”The paper, “U.S. federal resource allocations are inconsistent with concentrations of energy poverty,” is published today in Science Advances.The authors are Carlos Batlle, a professor at Comillas University in Spain and a senior lecturer with the MIT Energy Initiative; Peter Heller SM ’24, a recent graduate of the MIT Technology and Policy Program; Knittel, the George P. Shultz Professor at the MIT Sloan School of Management and associate dean for climate and sustainability at MIT; and Tim Schittekatte, a senior lecturer at MIT Sloan.A scorching decadeThe study, which grew out of graduate research that Heller conducted at MIT, deploys a machine-learning estimation technique that the scholars applied to U.S. energy use data.Specifically, the researchers took a sample of about 20,000 households from the U.S. Energy Information Administration’s Residential Energy Consumption Survey, which includes a wide variety of demographic characteristics about residents, along with building-type and geographic information. Then, using the U.S. Census Bureau’s American Community Survey data for 2015 and 2020, the research team estimated the average household energy burden for every census tract in the lower 48 states — 73,057 in 2015, and 84,414 in 2020.That allowed the researchers to chart the changes in energy burden in recent years, including the shift toward a greater energy burden in southern states. In 2015, Maine, Mississippi, Arkansas, Vermont, and Alabama were the five states (ranked in descending order) with the highest energy burden across census bureau tracts. In 2020, that had shifted somewhat, with Maine and Vermont dropping on the list and southern states increasingly having a larger energy burden. That year, the top five states in descending order were Mississippi, Arkansas, Alabama, West Virginia, and Maine.The data also reflect a urban-rural shift. In 2015, 23 percent of the census tracts where the average household is living in energy poverty were urban. That figure shrank to 14 percent by 2020.All told, the data are consistent with the picture of a warming world, in which milder winters in the North, Northwest, and Mountain West require less heating fuel, while more extreme summer temperatures in the South require more air conditioning.“Who’s going to be harmed most from climate change?” asks Knittel. “In the U.S., not surprisingly, it’s going to be the southern part of the U.S. And our study is confirming that, but also suggesting it’s the southern part of the U.S that’s least able to respond. If you’re already burdened, the burden’s growing.”An evolution for LIHEAP?In addition to identifying the shift in energy needs during the last decade, the study also illuminates a longer-term change in U.S. household energy needs, dating back to the 1980s. The researchers compared the present-day geography of U.S. energy burden to the help currently provided by the federal Low Income Home Energy Assistance Program (LIHEAP), which dates to 1981.Federal aid for energy needs actually predates LIHEAP, but the current program was introduced in 1981, then updated in 1984 to include cooling needs such as air conditioning. When the formula was updated in 1984, two “hold harmless” clauses were also adopted, guaranteeing states a minimum amount of funding.Still, LIHEAP’s parameters also predate the rise of temperatures over the last 40 years, and the current study shows that, compared to the current landscape of energy poverty, LIHEAP distributes relatively less of its funding to southern and southwestern states.“The way Congress uses formulas set in the 1980s keeps funding distributions nearly the same as it was in the 1980s,” Heller observes. “Our paper illustrates the shift in need that has occurred over the decades since then.”Currently, it would take a fourfold increase in LIHEAP to ensure that no U.S. household experiences energy poverty. But the researchers tested out a new funding design, which would help the worst-off households first, nationally, ensuring that no household would have an energy burden of greater than 20.3 percent.“We think that’s probably the most equitable way to allocate the money, and by doing that, you now have a different amount of money that should go to each state, so that no one state is worse off than the others,” Knittel says.And while the new distribution concept would require a certain amount of subsidy reallocation among states, it would be with the goal of helping all households avoid a certain level of energy poverty, across the country, at a time of changing climate, warming weather, and shifting energy needs in the U.S.“We can optimize where we spend the money, and that optimization approach is an important thing to think about,” Knittel says.  More

  • in

    Applying risk and reliability analysis across industries

    On Feb. 1, 2003, the space shuttle Columbia disintegrated as it returned to Earth, killing all seven astronauts on board. The tragic incident compelled NASA to amp up their risk safety assessments and protocols. They knew whom to call: Curtis Smith PhD ’02, who is now the KEPCO Professor of the Practice of Nuclear Science and Engineering at MIT.The nuclear community has always been a leader in probabilistic risk analysis and Smith’s work in risk-related research had made him an established expert in the field. When NASA came knocking, Smith had been working for the Nuclear Regulatory Commission (NRC) at the Idaho National Laboratory (INL). He pivoted quickly. For the next decade, Smith worked with NASA’s Office of Safety and Mission Assurance supporting their increased use of risk analysis. It was a software tool that Smith helped develop, SAPHIRE, that NASA would adopt to bolster its own risk analysis program.At MIT, Smith’s focus is on both sides of system operation: risk and reliability. A research project he has proposed involves evaluating the reliability of 3D-printed components and parts for nuclear reactors.Growing up in IdahoMIT is a distance from where Smith grew up on the Shoshone-Bannock Native American reservation in Fort Hall, Idaho. His father worked at a chemical manufacturing plant, while his mother and grandmother operated a small restaurant on the reservation.Southeast Idaho had a significant population of migrant workers and Smith grew up with a diverse group of friends, mostly Native American and Hispanic. “It was a largely positive time and set a worldview for me in many wonderful ways,” Smith remembers. When he was a junior in high school, the family moved to Pingree, Idaho, a small town of barely 500. Smith attended Snake River High, a regional school, and remembered the deep impact his teachers had. “I learned a lot in grade school and had great teachers, so my love for education probably started there. I tried to emulate my teachers,” Smith says.Smith went to Idaho State University in Pocatello for college, a 45-minute drive from his family. Drawn to science, he decided he wanted to study a subject that would benefit humanity the most: nuclear engineering. Fortunately, Idaho State has a strong nuclear engineering program. Smith completed a master’s degree in the same field at ISU while working for the Federal Bureau of Investigation in the security department during the swing shift — 5 p.m. to 1 a.m. — at the FBI offices in Pocatello. “It was a perfect job while attending grad school,” Smith says.His KEPCO Professor of the Practice appointment is the second stint for Smith at MIT: He completed his PhD in the Department of Nuclear Science and Engineering (NSE) under the advisement of Professor George Apostolakis in 2002.A career in risk analysis and managementAfter a doctorate at MIT, Smith returned to Idaho, conducting research in risk analysis for the NRC. He also taught technical courses and developed risk analysis software. “We did a whole host of work that supported the current fleet of nuclear reactors that we have,” Smith says.He was 10 years into his career at INL when NASA recruited him, leaning on his expertise in risk analysis to translate it into space missions. “I didn’t really have a background in aerospace, but I was able to bring all the engineering I knew, conducting risk analysis for nuclear missions. It was really exciting and I learned a lot about aerospace,” Smith says.Risk analysis uses statistics and data to answer complex questions involving safety. Among his projects: analyzing the risk involved in a Mars rover mission with a radioisotope-generated power source for the rover. Even if the necessary plutonium is encased in really strong material, calculations for risk have to factor in all eventualities, including the rocket blowing up.When the Fukushima incident happened in 2011, the Department of Energy (DoE) was more supportive of safety and risk analysis research. Smith found himself in the center of the action again, supporting large DoE research programs. He then moved to become the director of the Nuclear Safety and Regulatory Research Division at the INL. Smith found he loved the role, mentoring and nurturing the careers of a diverse set of scientists. “It turned out to be much more rewarding than I had expected,” Smith says. Under his leadership, the division grew from 45 to almost 90 research staff and won multiple national awards.Return to MITMIT NSE came calling in 2022, looking to fill the position of professor of the practice, an offer Smith couldn’t refuse. The department was looking to bulk up its risk and reliability offerings and Smith made a great fit. The DoE division he had been supervising had grown wings enough for Smith to seek out something new.“Just getting back to Boston is exciting,” Smith says. The last go-around involved bringing the family to the city and included a lot of sleepless nights. Smith’s wife, Jacquie, is also excited about being closer to the New England fan base. The couple has invested in season tickets for the Patriots and look to attend as many sporting events as possible.Smith is most excited about adding to the risk and reliability offerings at MIT at a time when the subject has become especially important for nuclear power. “I’m grateful for the opportunity to bring my knowledge and expertise from the last 30 years to the field,” he says. Being a professor of the practice of NSE carries with it a responsibility to unite theory and practice, something Smith is especially good at. “We always have to answer the question of, ‘How do I take the research and make that practical,’ especially for something important like nuclear power, because we need much more of these ideas in industry,” he says.He is particularly excited about developing the next generation of nuclear scientists. “Having the ability to do this at a place like MIT is especially fulfilling and something I have been desiring my whole career,” Smith says. More

  • in

    Celebrating the people behind Kendall Square’s innovation ecosystem

    While it’s easy to be amazed by the constant drumbeat of innovations coming from Kendall Square in Cambridge, Massachusetts, sometimes overlooked are the dedicated individuals working to make those scientific and technological breakthroughs a reality. Every day, people in the neighborhood tackle previously intractable problems and push the frontiers of their fields.This year’s Kendall Square Association (KSA) Annual Meeting centered around celebrating the people behind the area’s prolific innovation ecosystem. That included a new slate of awards and recognitions for community members and a panel discussion featuring MIT President Sally Kornbluth.“It’s truly inspiring to be surrounded by all of you: people who seem to share an exuberant curiosity, a pervasive ethic of service, and the baseline expectation that we’re all interested in impact — in making a difference for people and the planet,” Kornbluth said.The gathering took place in MIT’s Walker Memorial (Building 50) on Memorial Drive and attracted entrepreneurs, life science workers, local students, restaurant and retail shop owners, and leaders of nonprofits.The KSA itself is a nonprofit organization made up of over 150 organizations across the greater Kendall Square region, from large companies to universities like MIT and Harvard, along with the independent shops and restaurants that give Kendall Square its distinct character.New to this year’s event were two Founder Awards, which were given to Sangeeta Bhatia, the the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT, and Michal Preminger, head of Johnson and Johnson Innovation, for their work bringing people together to achieve hard things that benefit humanity.The KSA will donate $2,500 to the Science Club for Girls in Bhatia’s honor and $2,500 to Innovators for Purpose in honor of Preminger.Recognition was also given to Alex Cheung of the Cambridge Innovation Center and Shazia Mir of LabCentral for their work bringing Kendall Square’s community members together.Cambridge Mayor Denise Simmons also spoke at the event, noting the vital role the Kendall Square community has played in things like Covid-19 vaccine development and in the fight against climate change.“As many of you know, Cambridge has a long and proud history of innovation, with the presence of MIT and the remarkable growth of the tech and life science industry examples of that,” Simmons said. “We are leaving a lasting, positive impact in our city. This community has made and continues to make enormous contributions, not just to our city but to the world.”In her talk, Kornbluth also introduced the Kendall Square community to her plans for The Climate Project at MIT, which is designed to focus the Institute’s talent and resources to achieve real-world impact on climate change faster. The project will provide funding and catalyze partnerships around six climate “missions,” or broad areas where MIT researchers will seek to identify gaps in the global climate response that MIT can help fill.“The Climate Project is a whole-of-MIT mobilization that’s mission driven, solution focused, and outward looking,” Kornbluth explained. “If you want to make progress, faster and at scale, that’s the way!”After mingling with Kendall community members, Kornbluth said she still considers herself a newbie to the area but is coming to see the success of Kendall Square and MIT as more than a coincidence.“The more time I spend here, the more I come to understand the incredible synergies between MIT and Kendall Square,” Kornbluth said. “We know, for example, that proximity is an essential ingredient in our collective and distinctive recipe for impact. That proximity, and the cross-fertilization that comes with it, helps us churn out new technologies and patents, found startups, and course-correct our work as we try to keep pace with the world’s challenges. We can’t do any of this separately. Our work together — all of us in this thriving, wildly entrepreneurial community — is what drives the success of our innovation ecosystem.” More

  • in

    3 Questions: Bridging anthropology and engineering for clean energy in Mongolia

    In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built to provide heat for people in colder climates, and in places where clean energy is a challenge. Buyandelger and Short teamed up to launch Anthro-Engineering Decarbonization at the Million-Person Scale, an initiative intended to advance the heat bank idea in Mongolia, and ultimately demonstrate its potential as a scalable clean heat source in comparably challenging sites around the world. This project received funding from the inaugural MIT Climate and Sustainability Consortium Seed Awards program. In order to fund various components of the project, especially student involvement and additional staff, the project also received support from the MIT Global Seed Fund, New Engineering Education Transformation (NEET), Experiential Learning Office, Vice Provost for International Activities, and d’Arbeloff Fund for Excellence in Education.As part of this initiative, the partners developed a special topic course in anthropology to teach MIT undergraduates about Mongolia’s unique energy and climate challenges, as well as the historical, social, and economic context in which the heat bank would ideally find a place. The class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) prepares MIT students for a January Independent Activities Period (IAP) trip to the Mongolian capital of Ulaanbaatar, where they embed with Mongolian families, conduct research, and collaborate with their peers. Mongolian students also engaged in the project. Anthropology research scientist and lecturer Lauren Bonilla, who has spent the past two decades working in Mongolia, joined to co-teach the class and lead the IAP trips to Mongolia. With the project now in its third year and yielding some promising solutions on the ground, Buyandelger and Bonilla reflect on the challenges for anthropologists of advancing a clean energy technology in a developing nation with a unique history, politics, and culture. Q: Your roles in the molten salt heat bank project mark departures from your typical academic routine. How did you first approach this venture?Buyandelger: As an anthropologist of contemporary religion, politics, and gender in Mongolia, I have had little contact with the hard sciences or building or prototyping technology. What I do best is listening to people and working with narratives. When I first learned about this device for off-the-grid heating, a host of issues came straight to mind right away that are based on socioeconomic and cultural context of the place. The salt brick, which is encased in steel, must be heated to 400 degrees Celsius in a central facility, then driven to people’s homes. Transportation is difficult in Ulaanbaatar, and I worried about road safety when driving the salt brick to gers [traditional Mongolian homes] where many residents live. The device seemed a bit utopian to me, but I realized that this was an amazing educational opportunity: We could use the heat bank as part of an ethnographic project, so students could learn about the everyday lives of people — crucially, in the dead of winter — and how they might respond to this new energy technology in the neighborhoods of Ulaanbaatar.Bonilla: When I first went to Mongolia in the early 2000s as an undergraduate student, the impacts of climate change were already being felt. There had been a massive migration to the capital after a series of terrible weather events that devastated the rural economy. Coal mining had emerged as a vital part of the economy, and I was interested in how people regarded this industry that both provided jobs and damaged the air they breathed. I am trained as a human geographer, which involves seeing how things happening in a local place correspond to things happening at a global scale. Thinking about climate or sustainability from this perspective means making linkages between social life and environmental life. In Mongolia, people associated coal with national progress. Based on historical experience, they had low expectations for interventions brought by outsiders to improve their lives. So my first take on the molten salt project was that this was no silver bullet solution. At the same time, I wanted to see how we could make this a great project-based learning experience for students, getting them to think about the kind of research necessary to see if some version of the molten salt would work.Q: After two years, what lessons have you and the students drawn from both the class and the Ulaanbaatar field trips?Buyandelger: We wanted to make sure MIT students would not go to Mongolia and act like consultants. We taught them anthropological methods so they could understand the experiences of real people and think about how to bring people and new technologies together. The students, from engineering and anthropological and social science backgrounds, became critical thinkers who could analyze how people live in ger districts. When they stay with families in Ulaanbaatar in January, they not only experience the cold and the pollution, but they observe what people do for work, how parents care for their children, how they cook, sleep, and get from one place to another. This enables them to better imagine and test out how these people might utilize the molten salt heat bank in their homes.Bonilla: In class, students learn that interventions like this often fail because the implementation process doesn’t work, or the technology doesn’t meet people’s real needs. This is where anthropology is so important, because it opens up the wider landscape in which you’re intervening. We had really difficult conversations about the professional socialization of engineers and social scientists. Engineers love to work within boxes, but don’t necessarily appreciate the context in which their invention will serve.As a group, we discussed the provocative notion that engineers construct and anthropologists deconstruct. This makes it seem as if engineers are creators, and anthropologists are brought in as add-ons to consult and critique engineers’ creations. Our group conversation concluded that a project such as ours benefits from an iterative back-and-forth between the techno-scientific and humanistic disciplines.Q: So where does the molten salt brick project stand?Bonilla: Our research in Mongolia helped us produce a prototype that can work: Our partners at NUM are developing a hybrid stove that incorporates the molten salt brick. Supervised by instructor Nathan Melenbrink of MIT’s NEET program, our engineering students have been involved in this prototyping as well.The concept is for a family to heat it up using a coal fire once a day and it warms their home overnight. Based on our anthropological research, we believe that this stove would work better than the device as originally conceived. It won’t eliminate coal use in residences, but it will reduce emissions enough to have a meaningful impact on ger districts in Ulaanbaatar. The challenge now is getting funding to NUM so they can test different salt combinations and stove models and employ local blacksmiths to work on the design.This integrated stove/heat bank will not be the ultimate solution to the heating and pollution crisis in Mongolia. But it will be something that can inspire even more ideas. We feel with this project we are planting all kinds of seeds that will germinate in ways we cannot anticipate. It has sparked new relationships between MIT and Mongolian students, and catalyzed engineers to integrate a more humanistic, anthropological perspective in their work.Buyandelger: Our work illustrates the importance of anthropology in responding to the unpredictable and diverse impacts of climate change. Without our ethnographic research — based on participant observation and interviews, led by Dr. Bonilla, — it would have been impossible to see how the prototyping and modifications could be done, and where the molten salt brick could work and what shape it needed to take. This project demonstrates how indispensable anthropology is in moving engineering out of labs and companies and directly into communities.Bonilla: This is where the real solutions for climate change are going to come from. Even though we need solutions quickly, it will also take time for new technologies like molten salt bricks to take root and grow. We don’t know where the outcomes of these experiments will take us. But there’s so much that’s emerging from this project that I feel very hopeful about. More

  • in

    Aligning economic and regulatory frameworks for today’s nuclear reactor technology

    Liam Hines ’22 didn’t move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”

    Liam Hines: Ensuring that nuclear policy keeps up with nuclear technology.

    Undergraduate studies at MITKnowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.Doctoral focus on legal and regulatory frameworksWhen scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.A philosophy-driven outlookHines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.” More

  • in

    Affordable high-tech windows for comfort and energy savings

    Imagine if the windows of your home didn’t transmit heat. They’d keep the heat indoors in winter and outdoors on a hot summer’s day. Your heating and cooling bills would go down; your energy consumption and carbon emissions would drop; and you’d still be comfortable all year ’round.AeroShield, a startup spun out of MIT, is poised to start manufacturing such windows. Building operations make up 36 percent of global carbon dioxide emissions, and today’s windows are a major contributor to energy inefficiency in buildings. To improve building efficiency, AeroShield has developed a window technology that promises to reduce heat loss by up to 65 percent, significantly reducing energy use and carbon emissions in buildings, and the company just announced the opening of a new facility to manufacture its breakthrough energy-efficient windows.“Our mission is to decarbonize the built environment,” says Elise Strobach SM ’17, PhD ’20, co-founder and CEO of AeroShield. “The availability of affordable, thermally insulating windows will help us achieve that goal while also reducing homeowner’s heating and cooling bills.” According to the U.S. Department of Energy, for most homeowners, 30 percent of that bill results from window inefficiencies.Technology development at MITResearch on AeroShield’s window technology began a decade ago in the MIT lab of Evelyn Wang, Ford Professor of Engineering, now on leave to serve as director of the Advanced Research Projects Agency-Energy (ARPA-E). In late 2014, the MIT team received funding from ARPA-E, and other sponsors followed, including the MIT Energy Initiative through the MIT Tata Center for Technology and Design in 2016.The work focused on aerogels, remarkable materials that are ultra-porous, lighter than a marshmallow, strong enough to support a brick, and an unparalleled barrier to heat flow. Aerogels were invented in the 1930s and used by NASA and others as thermal insulation. The team at MIT saw the potential for incorporating aerogel sheets into windows to keep heat from escaping or entering buildings. But there was one problem: Nobody had been able to make aerogels transparent.An aerogel is made of transparent, loosely connected nanoscale silica particles and is 95 percent air. But an aerogel sheet isn’t transparent because light traveling through it gets scattered by the silica particles.After five years of theoretical and experimental work, the MIT team determined that the key to transparency was having the silica particles both small and uniform in size. This allows light to pass directly through, so the aerogel becomes transparent. Indeed, as long as the particle size is small and uniform, increasing the thickness of an aerogel sheet to achieve greater thermal insulation won’t make it less clear.Teams in the MIT lab looked at various applications for their super-insulating, transparent aerogels. Some focused on improving solar thermal collectors by making the systems more efficient and less expensive. But to Strobach, increasing the thermal efficiency of windows looked especially promising and potentially significant as a means of reducing climate change.The researchers determined that aerogel sheets could be inserted into the gap in double-pane windows, making them more than twice as insulating. The windows could then be manufactured on existing production lines with minor changes, and the resulting windows would be affordable and as wide-ranging in style as the window options available today. Best of all, once purchased and installed, the windows would reduce electricity bills, energy use, and carbon emissions.The impact on energy use in buildings could be considerable. “If we only consider winter, windows in the United States lose enough energy to power over 50 million homes,” says Strobach. “That wasted energy generates about 350 million tons of carbon dioxide — more than is emitted by 76 million cars.” Super-insulating windows could help home and building owners reduce carbon dioxide emissions by gigatons while saving billions in heating and cooling costs.The AeroShield storyIn 2019, Strobach and her MIT colleagues — Aaron Baskerville-Bridges MBA ’20, SM ’20 and Kyle Wilke PhD ’19 — co-founded AeroShield to further develop and commercialize their aerogel-based technology for windows and other applications. And in the subsequent five years, their hard work has attracted attention, recently leading to two major accomplishments.In spring 2024, the company announced the opening of its new pilot manufacturing facility in Waltham, Massachusetts, where the team will be producing, testing, and certifying their first full-size windows and patio doors for initial product launch. The 12,000 square foot facility will significantly expand the company’s capabilities, with cutting-edge aerogel R&D labs, manufacturing equipment, assembly lines, and testing equipment. Says Strobach, “Our pilot facility will supply window and door manufacturers as we launch our first products and will also serve as our R&D headquarters as we develop the next generation of energy-efficient products using transparent aerogels.”Also in spring 2024, AeroShield received a $14.5 million award from ARPA-E’s “Seeding Critical Advances for Leading Energy technologies with Untapped Potential” (SCALEUP) program, which provides new funding to previous ARPA-E awardees that have “demonstrated a viable path to market.” That funding will enable the company to expand its production capacity to tens of thousands, or even hundreds of thousands, of units per year.Strobach also cites two less-obvious benefits of the SCALEUP award.First, the funding is enabling the company to move more quickly on the scale-up phase of their technology development. “We know from our fundamental studies and lab experiments that we can make large-area aerogel sheets that could go in an entry or patio door,” says Elise. “The SCALEUP award allows us to go straight for that vision. We don’t have to do all the incremental sizes of aerogels to prove that we can make a big one. The award provides capital for us to buy the big equipment to make the big aerogel.”Second, the SCALEUP award confirms the viability of the company to other potential investors and collaborators. Indeed, AeroShield recently announced $5 million of additional funding from existing investors Massachusetts Clean Energy Center and MassVentures, as well as new investor MassMutual Ventures. Strobach notes that the company now has investor, engineering, and customer partners.She stresses the importance of partners in achieving AeroShield’s mission. “We know that what we’ve got from a fundamental perspective can change the industry,” she says. “Now we want to go out and do it. With the right partners and at the right pace, we may actually be able to increase the energy efficiency of our buildings early enough to help make a real dent in climate change.” More