More stories

  • in

    At Sustainability Connect 2024, a look at how MIT is decarbonizing its campus

    How is MIT working to meet its goal of decarbonizing the campus by 2050? How are local journalists communicating climate impacts and solutions to diverse audiences? What can each of us do to bring our unique skills and insight to tackle the challenges of climate and sustainability?

    These are all questions asked — and answered — at Sustainability Connect, the yearly forum hosted by the MIT Office of Sustainability that offers an inside look at this transformative and comprehensive work that is the foundation for MIT’s climate and sustainability leadership on campus. The event invites individuals in every role at MIT to learn more about the sustainability and climate work happening on campus and to share their ideas, highlight important work, and find new ways to plug into ongoing efforts. “This event is a reminder of the remarkable, diverse, and committed group of colleagues we are all part of at MIT,” said Director of Sustainability Julie Newman as the event kicked off alongside Interfaith Chaplain and Spiritual Advisor to the Indigenous Community Nina Lytton, who offered a moment of connection to attendees. At the event, that diverse and committed group was made up of more than 130 community members representing more than 70 departments, labs, and centers.

    This year, Sustainability Connect was timed with announcement of the new Climate Project at MIT, with Vice Provost Richard Lester joining the event to expound on MIT’s deep commitment to tackling the climate challenge over the next 10 years through a series of climate missions — many of which build upon the ongoing research taking place across campus already. In introducing the Climate Project at MIT, Lester echoed the theme of connection and collaboration. “This plan is about helping bridge the gap between what we would accomplish as a collection of energetic, talented, ambitious individuals, and what we’re capable of if we act together,” he said.

    Play video

    Sustainability Connect 2024: Decarbonizing the Campus Video: MIT Office of Sustainability

    Highlighting one of the many collaborative efforts to address MIT’s contributions to climate change was the Decarbonizing the Campus panel, which provided a real-time look at MIT’s work to eliminate carbon emissions from campus by 2050. Newman and Vice President for Campus Services and Stewardship Joe Higgins, along with Senior Campus Planner Vasso Mathes, Senior Sustainability Project Manager Steve Lanou, and PhD student Chenhan Shao, shared the many ways MIT is working to decarbonize its campus now and respond to evolving technologies and policies in the future. “A third of MIT’s faculty and researchers … are working to identify ways in which MIT can amplify its contributions to addressing the world’s climate crisis. But part and parcel to that goal is we’re putting significant effort into decarbonizing MIT’S own carbon footprint here on our campus,” Higgins said before highlighting how MIT continues to work on projects focused on building efficiency, renewable energy on campus and off, and support of a cleaner grid, among many decarbonization strategies.

    Newman shared the way in which climate education and research play an important role through the Decarbonization Working Group research streams, and courses like class 4.s42 (Carbon Reduction Pathways for the MIT Campus) offered by Professor Christoph Reinhart. Lanou and Shao also showcased how MIT is optimizing its response to Cambridge’s Building Energy Use Disclosure Ordinance, which is aimed at tracking and reducing emissions from large commercial properties in the city with a goal of net-zero buildings by 2035. “We’ve been able [create] pathways that would be practical, innovative, have a high degree of accountability, and that could work well within the structures and the limitations that we have,” Lanou said before debuting a dashboard he and Shao developed during Independent Activities Period to track and forecast work to meet the Cambridge goal. 

    MIT’s robust commitment to decarbonize its campus goes beyond energy systems, as highlighted by the work of many staff members who led roundtables as part of Sustainability in Motion, where attendees were invited to sit down with colleagues from across campus responsible for implementing the numerous climate and sustainability commitments. Teams reported out on progress to date on a range of efforts including sustainable food systems, safe and sustainable labs, and procurement. “Tackling the unprecedented challenges of a changing planet in and around MIT takes the support of individuals and teams from all corners of the Institute,” said Assistant Director of Sustainability Brian Goldberg in leading the session. “Whether folks have sustainability or climate in their job title, or they’ve contributed countless volunteer hours to the cause, our community members are leading many meaningful efforts to transform MIT.”

    Play video

    Sustainability Connect 2024: Climate in the Media PanelVideo: Office of Sustainability

    The day culminated with a panel on climate in the media, taking the excitement from the room and putting it in context — how do you translate this work, these solutions, and these challenges for a diverse audience with an ever-changing appetite for these kinds of stories? Laur Hesse Fisher, program director for the Environmental Solutions Initiate (ESI); Barbara Moran, climate and environment reporter at WBUR radio; and independent climate journalist Annie Ropeik joined the panel moderated by Knight Science Journalism Program at MIT Director Deborah Blum. Blum spoke of the current mistrust of not only the media but of news stories of climate impacts and even solutions. “To those of us telling the story of climate change, how do we reach resistant audiences? How do we gain their trust?” she asked.

    Fisher, who hosts the TIL Climate podcast and leads the ESI Journalism Fellowship, explained how she shifts her approach depending on her audience. “[With TIL Climate], a lot of what we do is, we try to understand what kinds of questions people have,” she said. “We have people submit questions to us, and then we answer them in language that they can understand.”

    For Moran, reaching audiences relies on finding the right topic to bridge to deeper issues. On a recent story about solar arrays and their impact on forests and the landscape around them, Moran saw bees and pollinators as the way in. “I can talk about bees and flowers. And that will hook people enough to get in. And then through that, we can address this issue of forest versus commercial solar and this tension, and what can be done to address that, and what’s working and what’s not,” she said.

    The panel highlighted that even as climate solutions and challenges become clearer, communicating them can remain a challenge. “Sustainability Connect is invaluable when it comes to sharing our work and bringing more people in, but over the years, it’s become clear how many people are still outside of these conversations,” said Newman. “Capping the day off with this conversation on climate in the media served as a jumping-off point for all of us to think how we can better communicate our efforts and tackle the challenges that keep us from bringing everyone to the table to help us find and share solutions for addressing climate change. It’s just the beginning of this conversation.” More

  • in

    Reflecting on COP28 — and humanity’s progress toward meeting global climate goals

    With 85,000 delegates, the 2023 United Nations climate change conference, known as COP28, was the largest U.N. climate conference in history. It was held at the end of the hottest year in recorded history. And after 12 days of negotiations, from Nov. 30 to Dec. 12, it produced a decision that included, for the first time, language calling for “transitioning away from fossil fuels,” though it stopped short of calling for their complete phase-out.

    U.N. Climate Change Executive Secretary Simon Stiell said the outcome in Dubai, United Arab Emirates, COP28’s host city, signaled “the beginning of the end” of the fossil fuel era. 

    COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held this year for the 28th time. Through the negotiations — and the immense conference and expo that takes place alongside them — a delegation of faculty, students, and staff from MIT was in Dubai to observe the negotiations, present new climate technologies, speak on panels, network, and conduct research.

    On Jan. 17, the MIT Center for International Studies (CIS) hosted a panel discussion with MIT delegates who shared their reflections on the experience. Asking what’s going on at COP is “like saying, ‘What’s going on in the city of Boston today?’” quipped Evan Lieberman, the Total Professor of Political Science and Contemporary Africa, director of CIS, and faculty director of MIT International Science and Technology Initiatives (MISTI). “The value added that all of us can provide for the MIT community is [to share] what we saw firsthand and how we experienced it.” 

    Phase-out, phase down, transition away?

    In the first week of COP28, over 100 countries issued a joint statement that included a call for “the global phase out of unabated fossil fuels.” The question of whether the COP28 decision — dubbed the “UAE Consensus” — would include this phase-out language animated much of the discussion in the days and weeks leading up to COP28. 

    Ultimately, the decision called for “transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner.” It also called for “accelerating efforts towards the phase down of unabated coal power,” referring to the combustion of coal without efforts to capture and store its emissions.

    In Dubai to observe the negotiations, graduate student Alessandra Fabbri said she was “confronted” by the degree to which semantic differences could impose significant ramifications — for example, when negotiators referred to a “just transition,” or to “developed vs. developing nations” — particularly where evolution in recent scholarship has produced more nuanced understandings of the terms.

    COP28 also marked the conclusion of the first global stocktake, a core component of the 2015 Paris Agreement. The effort every five years to assess the world’s progress in responding to climate change is intended as a basis for encouraging countries to strengthen their climate goals over time, a process often referred to as the Paris Agreement’s “ratchet mechanism.” 

    The technical report of the first global stocktake, published in September 2023, found that while the world has taken actions that have reduced forecasts of future warming, they are not sufficient to meet the goals of the Paris Agreement, which aims to limit global average temperature increase to “well below” 2 degrees Celsius, while pursuing efforts to limit the increase to 1.5 degrees above pre-industrial levels.

    “Despite minor, punctual advancements in climate action, parties are far from being on track to meet the long-term goals of the Paris Agreement,” said Fabbri, a graduate student in the School of Architecture and Planning and a fellow in MIT’s Leventhal Center for Advanced Urbanism. Citing a number of persistent challenges, including some parties’ fears that rapid economic transition may create or exacerbate vulnerabilities, she added, “There is a noted lack of accountability among certain countries in adhering to their commitments and responsibilities under international climate agreements.” 

    Climate and trade

    COP28 was the first climate summit to formally acknowledge the importance of international trade by featuring an official “Trade Day” on Dec. 4. Internationally traded goods account for about a quarter of global greenhouse gas emissions, raising complex questions of accountability and concerns about offshoring of industrial manufacturing, a phenomenon known as “emissions leakage.” Addressing the nexus of climate and trade is therefore considered essential for successful decarbonization, and a growing number of countries are leveraging trade policies — such as carbon fees applied to imported goods — to secure climate benefits. 

    Members of the MIT delegation participated in several related activities, sharing research and informing decision-makers. Catherine Wolfram, professor of applied economics in the MIT Sloan School of Management, and Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research (CEEPR), presented options for international cooperation on such trade policies at side events, including ones hosted by the World Trade Organization and European Parliament. 

    “While COPs are often criticized for highlighting statements that don’t have any bite, they are also tremendous opportunities to get people from around the world who care about climate and think deeply about these issues in one place,” said Wolfram.

    Climate and health

    For the first time in the conference’s nearly 30-year history, COP28 included a thematic “Health Day” that featured talks on the relationship between climate and health. Researchers from MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) have been testing policy solutions in this area for years through research funds such as the King Climate Action Initiative (K-CAI). 

    “An important but often-neglected area where climate action can lead to improved health is combating air pollution,” said Andre Zollinger, K-CAI’s senior policy manager. “COP28’s announcement on reducing methane leaks is an important step because action in this area could translate to relatively quick, cost-effective ways to curb climate change while improving air quality, especially for people living near these industrial sites.” K-CAI has an ongoing project in Colorado investigating the use of machine learning to predict leaks and improve the framework for regulating industrial methane emissions, Zollinger noted.

    This was J-PAL’s third time at COP, which Zollinger said typically presented an opportunity for researchers to share new findings and analysis with government partners, nongovernmental organizations, and companies. This year, he said, “We have [also] been working with negotiators in the [Middle East and North Africa] region in the months preceding COP to plug them into the latest evidence on water conservation, on energy access, on different challenging areas of adaptation that could be useful for them during the conference.”

    Sharing knowledge, learning from others

    MIT student Runako Gentles described COP28 as a “springboard” to greater impact. A senior from Jamaica studying civil and environmental engineering, Gentles said it was exciting to introduce himself as an MIT undergraduate to U.N. employees and Jamaican delegates in Dubai. “There’s a lot of talk on mitigation and cutting carbon emissions, but there needs to be much more going into climate adaptation, especially for small-island developing states like those in the Caribbean,” he said. “One of the things I can do, while I still try to finish my degree, is communicate — get the story out there to raise awareness.”

    At an official side event at COP28 hosted by MIT, Pennsylvania State University, and the American Geophysical Union, Maria T. Zuber, MIT’s vice president for research, stressed the importance of opportunities to share knowledge and learn from people around the world.

    “The reason this two-way learning is so important for us is simple: The ideas we come up with in a university setting, whether they’re technological or policy or any other kind of innovations — they only matter in the practical world if they can be put to good use and scaled up,” said Zuber. “And the only way we can know that our work has practical relevance for addressing climate is by working hand-in-hand with communities, industries, governments, and others.”

    Marcela Angel, research program director at the Environmental Solutions Initiative, and Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, also spoke at the event, which was moderated by Bethany Patten, director of policy and engagement for sustainability at the MIT Sloan School of Management.  More

  • in

    Meeting the clean energy needs of tomorrow

    Yuri Sebregts, chief technology officer at Shell, succinctly laid out the energy dilemma facing the world over the rest of this century. On one hand, demand for energy is quickly growing as countries in the developing world modernize and the global population grows, with 100 gigajoules of energy per person needed annually to enable quality-of-life benefits and industrialization around the globe. On the other, traditional energy sources are quickly warming the planet, with the world already seeing the devastating effects of increasingly frequent extreme weather events. 

    While the goals of energy security and energy sustainability are seemingly at odds with one another, the two must be pursued in tandem, Sebregts said during his address at the MIT Energy Initiative Fall Colloquium.

    “An environmentally sustainable energy system that isn’t also a secure energy system is not sustainable,” Sebregts said. “And conversely, a secure energy system that is not environmentally sustainable will do little to ensure long-term energy access and affordability. Therefore, security and sustainability must go hand-in-hand. You can’t trade off one for the other.”

    Sebregts noted that there are several potential pathways to help strike this balance, including investments in renewable energy sources, the use of carbon offsets, and the creation of more efficient tools, products, and processes. However, he acknowledged that meeting growing energy demands while minimizing environmental impacts is a global challenge requiring an unprecedented level of cooperation among countries and corporations across the world. 

    “At Shell, we recognize that this will require a lot of collaboration between governments, businesses, and civil society,” Sebregts said. “That’s not always easy.”

    Global conflict and global warming

    In 2021, Sebregts noted, world leaders gathered in Glasgow, Scotland and collectively promised to deliver on the “stretch goal” of the 2015 Paris Agreement, which would limit global warming to 1.5 degrees Celsius — a level that scientists believe will help avoid the worst potential impacts of climate change. But, just a few months later, Russia invaded Ukraine, resulting in chaos in global energy markets and illustrating the massive impact that geopolitical friction can have on efforts to reduce carbon emissions.

    “Even though global volatility has been a near constant of this century, the situation in Ukraine is proving to be a turning point,” Sebregts said. “The stress it placed on the global supply of energy, food, and other critical materials was enormous.”

    In Europe, Sebregts noted, countries affected by the loss of Russia’s natural gas supply began importing from the Middle East and the United States. This, in turn, drove up prices. While this did result in some efforts to limit energy use, such as Europeans lowering their thermostats in the winter, it also caused some energy buyers to turn to coal. For instance, the German government approved additional coal mining to boost its energy security — temporarily reversing a decades-long transition away from the fuel. To put this into wider perspective, in a single quarter, China increased its coal generation capacity by as much as Germany had reduced its own over the previous 20 years.

    The promise of electrification

    Sebregts noted the strides being made toward electrification, which is expected to have a significant impact on global carbon emissions. To meet net-zero emissions (the point at which humans are adding no more carbon to the atmosphere than they are removing) by 2050, the share of electricity as a portion of total worldwide energy consumption must reach 37 percent by 2030, up from 20 percent in 2020, Sebregts said.

    He pointed out that Shell has become one of the world’s largest electric vehicle charging companies, with more than 30,000 public charge points. By 2025, that number will increase to 70,000, and it is expected to soar to 200,000 by 2030. While demand and infrastructure for electric vehicles are growing, Sebregts said that the “real needle-mover” will be industrial electrification, especially in so-called “hard-to-abate” sectors.

    This progress will depend heavily on global cooperation — Sebregts pointed out that China dominates the international market for many rare elements that are key components of electrification infrastructure. “It shouldn’t be a surprise that the political instability, shifting geopolitical tensions, and environmental and social governance issues are significant risks for the energy transition,” he said. “It is imperative that we reduce, control, and mitigate these risks as much as possible.”

    Two possible paths

    For decades, Sebregts said, Shell has created scenarios to help senior managers think through the long-term challenges facing the company. While Sebregts stressed that these scenarios are not predictions, they do take into account real-world conditions, and they are meant to give leaders the opportunity to grapple with plausible situations.

    With this in mind, Sebregts outlined Shell’s most recent Energy Security Scenarios, describing the potential future consequences of attempts to balance growing energy demand with sustainability — scenarios that envision vastly different levels of global cooperation, with huge differences in projected results. 

    The first scenario, dubbed “Archipelagos,” imagines countries pursuing energy security through self-interest — a fragmented, competitive process that would result in a global temperature increase of 2.2 degrees Celsius by the end of this century. The second scenario, “Sky 2050,” envisions countries around the world collaborating to change the energy system for their mutual benefit. This more optimistic scenario would see a much lower global temperature increase of 1.2 C by 2100.

    “The good news is that in both scenarios, the world is heading for net-zero emissions at some point,” Sebregts said. “The difference is a question of when it gets there. In Sky 2050, it is the middle of the century. In Archipelagos, it is early in the next century.”

    On the other hand, Sebregts added, the average global temperature will increase by more than 1.5 C for some period of time in either scenario. But, in the Archipelagos scenario, this overshoot will be much larger, and will take much longer to come down. “So, two very different futures,” Sebregts said. “Two very different worlds.”

    The work ahead

    Questioned about the costs of transitioning to a net-zero energy ecosystem, Sebregts said that it is “very hard” to provide an accurate answer. “If you impose an additional constraint … you’re going to have to add some level of cost,” he said. “But then, of course, there’s 30 years of technology development pathway that might counteract some of that.”

    In some cases, such as air travel, Sebregts said, it will likely remain impractical to either rely on electrification or sequester carbon at the source of emission. Direct air capture (DAC) methods, which mechanically pull carbon directly from the atmosphere, will have a role to play in offsetting these emissions, he said. Sebregts predicted that the price of DAC could come down significantly by the middle of this century. “I would venture that a price of $200 to $250 a ton of CO2 by 2050 is something that the world would be willing to spend, at least in developed economies, to offset those very hard-to-abate instances.”

    Sebregts noted that Shell is working on demonstrating DAC technologies in Houston, Texas, constructing what will become Europe’s largest hydrogen plant in the Netherlands, and taking other steps to profitably transition to a net-zero emissions energy company by 2050. “We need to understand what can help our customers transition quicker and how we can continue to satisfy their needs,” he said. “We must ensure that energy is affordable, accessible, and sustainable, as soon as possible.” More

  • in

    Co-creating climate futures with real-time data and spatial storytelling

    Virtual story worlds and game engines aren’t just for video games anymore. They are now tools for scientists and storytellers to digitally twin existing physical spaces and then turn them into vessels to dream up speculative climate stories and build collective designs of the future. That’s the theory and practice behind the MIT WORLDING initiative.

    Twice this year, WORLDING matched world-class climate story teams working in XR (extended reality) with relevant labs and researchers across MIT. One global group returned for a virtual gathering online in partnership with Unity for Humanity, while another met for one weekend in person, hosted at the MIT Media Lab.

    “We are witnessing the birth of an emergent field that fuses climate science, urban planning, real-time 3D engines, nonfiction storytelling, and speculative fiction, and it is all fueled by the urgency of the climate crises,” says Katerina Cizek, lead designer of the WORLDING initiative at the Co-Creation Studio of MIT Open Documentary Lab. “Interdisciplinary teams are forming and blossoming around the planet to collectively imagine and tell stories of healthy, livable worlds in virtual 3D spaces and then finding direct ways to translate that back to earth, literally.”

    At this year’s virtual version of WORLDING, five multidisciplinary teams were selected from an open call. In a week-long series of research and development gatherings, the teams met with MIT scientists, staff, fellows, students, and graduates, as well as other leading figures in the field. Guests ranged from curators at film festivals such as Sundance and Venice, climate policy specialists, and award-winning media creators to software engineers and renowned Earth and atmosphere scientists. The teams heard from MIT scholars in diverse domains, including geomorphology, urban planning as acts of democracy, and climate researchers at MIT Media Lab.

    Mapping climate data

    “We are measuring the Earth’s environment in increasingly data-driven ways. Hundreds of terabytes of data are taken every day about our planet in order to study the Earth as a holistic system, so we can address key questions about global climate change,” explains Rachel Connolly, an MIT Media Lab research scientist focused in the “Future Worlds” research theme, in a talk to the group. “Why is this important for your work and storytelling in general? Having the capacity to understand and leverage this data is critical for those who wish to design for and successfully operate in the dynamic Earth environment.”

    Making sense of billions of data points was a key theme during this year’s sessions. In another talk, Taylor Perron, an MIT professor of Earth, atmospheric and planetary sciences, shared how his team uses computational modeling combined with many other scientific processes to better understand how geology, climate, and life intertwine to shape the surfaces of Earth and other planets. His work resonated with one WORLDING team in particular, one aiming to digitally reconstruct the pre-Hispanic Lake Texcoco — where current day Mexico City is now situated — as a way to contrast and examine the region’s current water crisis.

    Democratizing the future

    While WORLDING approaches rely on rigorous science and the interrogation of large datasets, they are also founded on democratizing community-led approaches.

    MIT Department of Urban Studies and Planning graduate Lafayette Cruise MCP ’19 met with the teams to discuss how he moved his own practice as a trained urban planner to include a futurist component involving participatory methods. “I felt we were asking the same limited questions in regards to the future we were wanting to produce. We’re very limited, very constrained, as to whose values and comforts are being centered. There are so many possibilities for how the future could be.”

    Scaling to reach billions

    This work scales from the very local to massive global populations. Climate policymakers are concerned with reaching billions of people in the line of fire. “We have a goal to reach 1 billion people with climate resilience solutions,” says Nidhi Upadhyaya, deputy director at Atlantic Council’s Adrienne Arsht-Rockefeller Foundation Resilience Center. To get that reach, Upadhyaya is turning to games. “There are 3.3 billion-plus people playing video games across the world. Half of these players are women. This industry is worth $300 billion. Africa is currently among the fastest-growing gaming markets in the world, and 55 percent of the global players are in the Asia Pacific region.” She reminded the group that this conversation is about policy and how formats of mass communication can be used for policymaking, bringing about change, changing behavior, and creating empathy within audiences.

    Socially engaged game development is also connected to education at Unity Technologies, a game engine company. “We brought together our education and social impact work because we really see it as a critical flywheel for our business,” said Jessica Lindl, vice president and global head of social impact/education at Unity Technologies, in the opening talk of WORLDING. “We upscale about 900,000 students, in university and high school programs around the world, and about 800,000 adults who are actively learning and reskilling and upskilling in Unity. Ultimately resulting in our mission of the ‘world is a better place with more creators in it,’ millions of creators who reach billions of consumers — telling the world stories, and fostering a more inclusive, sustainable, and equitable world.”

    Access to these technologies is key, especially the hardware. “Accessibility has been missing in XR,” explains Reginé Gilbert, who studies and teaches accessibility and disability in user experience design at New York University. “XR is being used in artificial intelligence, assistive technology, business, retail, communications, education, empathy, entertainment, recreation, events, gaming, health, rehabilitation meetings, navigation, therapy, training, video programming, virtual assistance wayfinding, and so many other uses. This is a fun fact for folks: 97.8 percent of the world hasn’t tried VR [virtual reality] yet, actually.”

    Meanwhile, new hardware is on its way. The WORLDING group got early insights into the highly anticipated Apple Vision Pro headset, which promises to integrate many forms of XR and personal computing in one device. “They’re really pushing this kind of pass-through or mixed reality,” said Dan Miller, a Unity engineer on the poly spatial team, collaborating with Apple, who described the experience of the device as “You are viewing the real world. You’re pulling up windows, you’re interacting with content. It’s a kind of spatial computing device where you have multiple apps open, whether it’s your email client next to your messaging client with a 3D game in the middle. You’re interacting with all these things in the same space and at different times.”

    “WORLDING combines our passion for social-impact storytelling and incredible innovative storytelling,” said Paisley Smith of the Unity for Humanity Program at Unity Technologies. She added, “This is an opportunity for creators to incubate their game-changing projects and connect with experts across climate, story, and technology.”

    Meeting at MIT

    In a new in-person iteration of WORLDING this year, organizers collaborated closely with Connolly at the MIT Media Lab to co-design an in-person weekend conference Oct. 25 – Nov. 7 with 45 scholars and professionals who visualize climate data at NASA, the National Oceanic and Atmospheric Administration, planetariums, and museums across the United States.

    A participant said of the event, “An incredible workshop that had had a profound effect on my understanding of climate data storytelling and how to combine different components together for a more [holistic] solution.”

    “With this gathering under our new Future Worlds banner,” says Dava Newman, director of the MIT Media Lab and Apollo Program Professor of Astronautics chair, “the Media Lab seeks to affect human behavior and help societies everywhere to improve life here on Earth and in worlds beyond, so that all — the sentient, natural, and cosmic — worlds may flourish.” 

    “WORLDING’s virtual-only component has been our biggest strength because it has enabled a true, international cohort to gather, build, and create together. But this year, an in-person version showed broader opportunities that spatial interactivity generates — informal Q&As, physical worksheets, and larger-scale ideation, all leading to deeper trust-building,” says WORLDING producer Srushti Kamat SM ’23.

    The future and potential of WORLDING lies in the ongoing dialogue between the virtual and physical, both in the work itself and in the format of the workshops. More

  • in

    Angela Belcher delivers 2023 Dresselhaus Lecture on evolving organisms for new nanomaterials

    “How do we get to making nanomaterials that haven’t been evolved before?” asked Angela Belcher at the 2023 Mildred S. Dresselhaus Lecture at MIT on Nov. 20. “We can use elements that biology has already given us.”

    The combined in-person and virtual audience of over 300 was treated to a light-up, 3D model of M13 bacteriophage, a virus that only infects bacteria, complete with a pull-out strand of DNA. Belcher used the feather-boa-like model to show how her research group modifies the M13’s genes to add new DNA and peptide sequences to template inorganic materials.

    “I love controlling materials at the nanoscale using biology,” said Belcher, the James Mason Crafts Professor of Biological Engineering, materials science professor, and of the Koch Institute of Integrative Cancer Research at MIT. “We all know if you control materials at the nanoscale and you can start to tune them, then you can have all kinds of different applications.” And the opportunities are indeed vast — from building batteries, fuel cells, and solar cells to carbon sequestration and storage, environmental remediation, catalysis, and medical diagnostics and imaging.

    Belcher sprinkled her talk with models and props, lined up on a table at the front of the 10-250 lecture hall, to demonstrate a wide variety of concepts and projects made possible by the intersection of biology and nanotechnology.

    Play video

    2023 Mildred S. Dresselhaus Lecture: Angela BelcherVideo: MIT.nano

    Energy storage and environment

    “How do you go from a DNA sequence to a functioning battery?” posed Belcher. Grabbing a model of a large carbon nanotube, she explained how her group engineered a phage to pick up carbon nanotubes that would wind all the way around the virus and then fill in with different cathode or anode materials to make nanowires for battery electrodes.

    How about using the M13 bacteriophage to improve the environment? Belcher referred to a project by former student Geran Zhang PhD ’19 that proved the virus can be modified for this context, too. He used the phage to template high-surface-area, carbon-based materials that can grab small molecules and break them down, Belcher said, opening a realm of possibilities from cleaning up rivers to developing chemical warfare agents to combating smog.

    Belcher’s lab worked with the U.S. Army to produce protective clothing and masks made of these carbon-based virus nanofibers. “We went from five liters in our lab to a thousand liters, then 10,000 liters in the army labs where we’re able to make kilograms of the material,” Belcher said, stressing the importance of being able to test and prototype at scale.

    Imaging tools and therapeutics in cancer

    In the area of biomedical imaging, Belcher explained, a lot less is known in near-infrared imaging — imaging in wavelengths above 1,000 nanometers — than other imaging techniques, yet with near-infrared scientists can see much deeper inside the body. Belcher’s lab built their own systems to image at these wavelengths. The third generation of this system provides real-time, sub-millimeter optical imaging for guided surgery.

    Working with Sangeeta Bhatia, the John J. and Dorothy Wilson Professor of Engineering, Belcher used carbon nanotubes to build imaging tools that find tiny tumors during surgery that doctors otherwise would not be able to see. The tool is actually a virus engineered to carry with it a fluorescent, single-walled carbon nanotube as it seeks out the tumors.

    Nearing the end of her talk, Belcher presented a goal: to develop an accessible detection and diagnostic technology for ovarian cancer in five to 10 years.

    “We think that we can do it,” Belcher said. She described her students’ work developing a way to scan an entire fallopian tube, as opposed to just one small portion, to find pre-cancer lesions, and talked about the team of MIT faculty, doctors, and researchers working collectively toward this goal.

    “Part of the secret of life and the meaning of life is helping other people enjoy the passage of time,” said Belcher in her closing remarks. “I think that we can all do that by working to solve some of the biggest issues on the planet, including helping to diagnose and treat ovarian cancer early so people have more time to spend with their family.”

    Honoring Mildred S. Dresselhaus

    Belcher was the fifth speaker to deliver the Dresselhaus Lecture, an annual event organized by MIT.nano to honor the late MIT physics and electrical engineering Institute Professor Mildred Dresselhaus. The lecture features a speaker from anywhere in the world whose leadership and impact echo Dresselhaus’s life, accomplishments, and values.

    “Millie was and is a huge hero of mine,” said Belcher. “Giving a lecture in Millie’s name is just the greatest honor.”

    Belcher dedicated the talk to Dresselhaus, whom she described with an array of accolades — a trailblazer, a genius, an amazing mentor, teacher, and inventor. “Just knowing her was such a privilege,” she said.

    Belcher also dedicated her talk to her own grandmother and mother, both of whom passed away from cancer, as well as late MIT professors Susan Lindquist and Angelika Amon, who both died of ovarian cancer.

    “I’ve been so fortunate to work with just the most talented and dedicated graduate students, undergraduate students, postdocs, and researchers,” concluded Belcher. “It has been a pure joy to be in partnership with all of you to solve these very daunting problems.” More

  • in

    Celebrating five years of MIT.nano

    There is vast opportunity for nanoscale innovation to transform the world in positive ways — expressed MIT.nano Director Vladimir Bulović as he posed two questions to attendees at the start of the inaugural Nano Summit: “Where are we heading? And what is the next big thing we can develop?”

    “The answer to that puts into perspective our main purpose — and that is to change the world,” Bulović, the Fariborz Maseeh Professor of Emerging Technologies, told an audience of more than 325 in-person and 150 virtual participants gathered for an exploration of nano-related research at MIT and a celebration of MIT.nano’s fifth anniversary.

    Over a decade ago, MIT embarked on a massive project for the ultra-small — building an advanced facility to support research at the nanoscale. Construction of MIT.nano in the heart of MIT’s campus, a process compared to assembling a ship in a bottle, began in 2015, and the facility launched in October 2018.

    Fast forward five years: MIT.nano now contains nearly 170 tools and instruments serving more than 1,200 trained researchers. These individuals come from over 300 principal investigator labs, representing more than 50 MIT departments, labs, and centers. The facility also serves external users from industry, other academic institutions, and over 130 startup and multinational companies.

    A cross section of these faculty and researchers joined industry partners and MIT community members to kick off the first Nano Summit, which is expected to become an annual flagship event for MIT.nano and its industry consortium. Held on Oct. 24, the inaugural conference was co-hosted by the MIT Industrial Liaison Program.

    Six topical sessions highlighted recent developments in quantum science and engineering, materials, advanced electronics, energy, biology, and immersive data technology. The Nano Summit also featured startup ventures and an art exhibition.

    Watch the videos here.

    Seeing and manipulating at the nanoscale — and beyond

    “We need to develop new ways of building the next generation of materials,” said Frances Ross, the TDK Professor in Materials Science and Engineering (DMSE). “We need to use electron microscopy to help us understand not only what the structure is after it’s built, but how it came to be. I think the next few years in this piece of the nano realm are going to be really amazing.”

    Speakers in the session “The Next Materials Revolution,” chaired by MIT.nano co-director for Characterization.nano and associate professor in DMSE James LeBeau, highlighted areas in which cutting-edge microscopy provides insights into the behavior of functional materials at the nanoscale, from anti-ferroelectrics to thin-film photovoltaics and 2D materials. They shared images and videos collected using the instruments in MIT.nano’s characterization suites, which were specifically designed and constructed to minimize mechanical-vibrational and electro-magnetic interference.

    Later, in the “Biology and Human Health” session chaired by Boris Magasanik Professor of Biology Thomas Schwartz, biologists echoed the materials scientists, stressing the importance of the ultra-quiet, low-vibration environment in Characterization.nano to obtain high-resolution images of biological structures.

    “Why is MIT.nano important for us?” asked Schwartz. “An important element of biology is to understand the structure of biology macromolecules. We want to get to an atomic resolution of these structures. CryoEM (cryo-electron microscopy) is an excellent method for this. In order to enable the resolution revolution, we had to get these instruments to MIT. For that, MIT.nano was fantastic.”

    Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences, shared CryoEM images from her lab’s work, followed by biology Associate Professor Joey Davis who spoke about image processing. When asked about the next stage for CryoEM, Davis said he’s most excited about in-situ tomography, noting that there are new instruments being designed that will improve the current labor-intensive process.

    To chart the future of energy, chemistry associate professor Yogi Surendranath is also using MIT.nano to see what is happening at the nanoscale in his research to use renewable electricity to change carbon dioxide into fuel.

    “MIT.nano has played an immense role, not only in facilitating our ability to make nanostructures, but also to understand nanostructures through advanced imaging capabilities,” said Surendranath. “I see a lot of the future of MIT.nano around the question of how nanostructures evolve and change under the conditions that are relevant to their function. The tools at MIT.nano can help us sort that out.”

    Tech transfer and quantum computing

    The “Advanced Electronics” session chaired by Jesús del Alamo, the Donner Professor of Science in the Department of Electrical Engineering and Computer Science (EECS), brought together industry partners and MIT faculty for a panel discussion on the future of semiconductors and microelectronics. “Excellence in innovation is not enough, we also need to be excellent in transferring these to the marketplace,” said del Alamo. On this point, panelists spoke about strengthening the industry-university connection, as well as the importance of collaborative research environments and of access to advanced facilities, such as MIT.nano, for these environments to thrive.

    The session came on the heels of a startup exhibit in which eleven START.nano companies presented their technologies in health, energy, climate, and virtual reality, among other topics. START.nano, MIT.nano’s hard-tech accelerator, provides participants use of MIT.nano’s facilities at a discounted rate and access to MIT’s startup ecosystem. The program aims to ease hard-tech startups’ transition from the lab to the marketplace, surviving common “valleys of death” as they move from idea to prototype to scaling up.

    When asked about the state of quantum computing in the “Quantum Science and Engineering” session, physics professor Aram Harrow related his response to these startup challenges. “There are quite a few valleys to cross — there are the technical valleys, and then also the commercial valleys.” He spoke about scaling superconducting qubits and qubits made of suspended trapped ions, and the need for more scalable architectures, which we have the ingredients for, he said, but putting everything together is quite challenging.

    Throughout the session, William Oliver, professor of physics and the Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science, asked the panelists how MIT.nano can address challenges in assembly and scalability in quantum science.

    “To harness the power of students to innovate, you really need to allow them to get their hands dirty, try new things, try all their crazy ideas, before this goes into a foundry-level process,” responded Kevin O’Brien, associate professor in EECS. “That’s what my group has been working on at MIT.nano, building these superconducting quantum processors using the state-of-the art fabrication techniques in MIT.nano.”

    Connecting the digital to the physical

    In his reflections on the semiconductor industry, Douglas Carlson, senior vice president for technology at MACOM, stressed connecting the digital world to real-world application. Later, in the “Immersive Data Technology” session, MIT.nano associate director Brian Anthony explained how, at the MIT.nano Immersion Lab, researchers are doing just that.

    “We think about and facilitate work that has the human immersed between hardware, data, and experience,” said Anthony, principal research scientist in mechanical engineering. He spoke about using the capabilities of the Immersion Lab to apply immersive technologies to different areas — health, sports, performance, manufacturing, and education, among others. Speakers in this session gave specific examples in hardware, pediatric health, and opera.

    Anthony connected this third pillar of MIT.nano to the fab and characterization facilities, highlighting how the Immersion Lab supports work conducted in other parts of the building. The Immersion Lab’s strength, he said, is taking novel work being developed inside MIT.nano and bringing it up to the human scale to think about applications and uses.

    Artworks that are scientifically inspired

    The Nano Summit closed with a reception at MIT.nano where guests could explore the facility and gaze through the cleanroom windows, where users were actively conducting research. Attendees were encouraged to visit an exhibition on MIT.nano’s first- and second-floor galleries featuring work by students from the MIT Program in Art, Culture, and Technology (ACT) who were invited to utilize MIT.nano’s tool sets and environments as inspiration for art.

    In his closing remarks, Bulović reflected on the community of people who keep MIT.nano running and who are using the tools to advance their research. “Today we are celebrating the facility and all the work that has been done over the last five years to bring it to where it is today. It is there to function not just as a space, but as an essential part of MIT’s mission in research, innovation, and education. I hope that all of us here today take away a deep appreciation and admiration for those who are leading the journey into the nano age.” More

  • in

    A green hydrogen innovation for clean energy

    Renewable energy today — mainly derived from the sun or wind — depends on batteries for storage. While costs have dropped in recent years, the pursuit of more efficient means of storing renewable power continues.

    “All of these technologies, unfortunately, have a long way to go,” said Sossina Haile SB ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, at recent talk at MIT. She was the speaker of the fall 2023 Wulff Lecture, an event hosted by the Department of Materials Science and Engineering (DMSE) to ignite enthusiasm for the discipline.

    To add to the renewable energy mix — and help quicken the pace to a sustainable future — Haile is working on an approach based on hydrogen in fuel cells, particularly for eco-friendly fuel in cars. Fuel cells, like batteries, produce electricity from chemical reactions but don’t lose their charge so long as fuel is supplied.

    To generate power, the hydrogen must be pure — not attached to another molecule. Most methods of producing hydrogen today require burning fossil fuel, which generates planet-heating carbon emissions. Haile proposes a “green” process using renewable electricity to extract the hydrogen from steam.

    When hydrogen is used in a fuel cell, “you have water as the product, and that’s the beautiful zero emissions,” Haile said, referring to the renewable energy production cycle that is set in motion.

    Ammonia fuels hydrogen’s potential

    Hydrogen is not yet widely used as a fuel because it’s difficult to transport. For one, it has low energy density, meaning a large volume of hydrogen gas is needed to store a large amount of energy. And storing it is challenging because hydrogen’s tiny molecules can infiltrate metal tanks or pipes, causing cracks and gas leakage.

    Haile’s solution for transporting hydrogen is using ammonia to “carry” it. Ammonia is three parts hydrogen and one part nitrogen, so the hydrogen needs to be separated from the nitrogen before it can be used in the kind of fuel cells that can power cars.

    Ammonia has some advantages, including using existing pipelines and a high transmission capacity, Haile said — so more power can be transmitted at any given time.

    To extract the hydrogen from ammonia, Haile has built devices that look a lot like fuel cells, with cesium dihydrogen phosphate as an electrolyte. The “superprotonic” material displays high proton conductivity — it allows protons, or positively charged particles, to move through it. This is important for hydrogen, which has just a proton and an electron. By letting only protons through the electrolyte, the device strips hydrogen from the ammonia, leaving behind the nitrogen.

    The material has other benefits, too, Haile said: “It’s inexpensive, nontoxic, earth-abundant — all these good things that you want to have when you think about a sustainable energy technology.”

    Play video

    2023 Fall Wulff LectureVideo: Department of Materials Science and Engineering

    Sparking interest — and hope

    Haile’s talk piqued interest in the audience, which nearly filled the 6-120 auditorium at MIT, which seats about 150 people.

    Materials science and engineering major Nikhita Law heard hope in Haile’s talk for a more sustainable future.

    “A major problem in making our energy system sustainable is finding ways to store energy from renewables,” Law says. Even if hydrogen-powered cars are not as wide-scale as lithium-battery-powered electric cars, “a permanent energy storage station where we convert electricity into hydrogen and convert it back seems like it makes more sense than mining more lithium.”

    Another DMSE student, senior Daniel Tong, learned about the challenges involved in transporting hydrogen at another seminar and was curious to learn more. “This was something I hadn’t thought of: Can you carry hydrogen more effectively in a different form? That’s really cool.”

    He adds that talks like the Wulff Lecture are helpful in keeping people up to date in a wide-ranging, interdisciplinary field such as materials science and engineering, which spans chemistry, physics, engineering, and other disciplines. “This is a really good way to get exposed to different parts of materials science. There are so many more facets than you know of.”

    In her talk, Haile encouraged audience members to get involved in sustainability research.

    “There’s lots of room for further insight and materials discovery,” she said.

    Haile concluded by underscoring the challenges faced by developing countries in dealing with climate change impacts, particularly those near the equator where there isn’t adequate infrastructure to deal with big swings in precipitation and temperature. For the people who aren’t driven to solve problems that affect people on the other side of the world, Haile offered some extra motivation.

    “I’m sure many of you enjoy coffee. This is going to put the coffee crops in jeopardy as well,” she said. More

  • in

    A civil discourse on climate change

    A new MIT initiative designed to encourage open dialogue on campus kicked off with a conversation focused on how to address challenges related to climate change.

    “Climate Change: Existential Threat or Bump in the Road” featured Steve Koonin, theoretical physicist and former U.S. undersecretary for science during the Obama administration, and Kerry Emanuel, professor emeritus of atmospheric science at MIT. A crowd of roughly 130 students, staff, and faculty gathered in an MIT lecture hall for the discussion on Tuesday, Oct. 24. 

    “The bump is strongly favored,” Koonin said when the talk began, referring to his contention that climate change was a “bump in the road” rather than an existential threat. After proposing a future in which we could potentially expect continued growth in America’s gross domestic product despite transportation and infrastructure challenges related to climate change, he concluded that investments in nuclear energy and capacity increases related to storing wind- and solar-generated energy could help mitigate climate-related phenomena. 

    Emanuel, while mostly agreeing with Koonin’s assessment of climate challenges and potential solutions, cautioned against underselling the threat of human-aided climate change.

    “Humanity’s adaptation to climate stability hasn’t prepared us to effectively manage massive increases in temperature and associated effects,” he argued. “We’re poorly adapted to less-frequent events like those we’re observing now.”

    Decarbonization, Emanuel noted, can help mitigate global conflicts related to fossil fuel usage. “Carbonization kills between 8 and 9 million people annually,” he said.

    The conversation on climate change is one of several planned on campus this academic year. The speaker series is one part of “Civil Discourse in the Classroom and Beyond,” an initiative being led by MIT philosophers Alex Byrne and Brad Skow. The two-year project is meant to encourage the open exchange of ideas inside and outside college and university classrooms. 

    The speaker series pairs external thought leaders with MIT faculty to encourage the interrogation and debate of all kinds of ideas.

    Finding common ground

    At the talk on climate change, both Koonin and Emanuel recommended a slow and steady approach to mitigation efforts, reminding attendees that, for example, developing nations can’t afford to take a developed world approach to climate change. 

    “These people have immediate needs to meet,” Koonin reminded the audience, “which can include fossil fuel use.”

    Both Koonin and Emanuel recommended a series of steps to assist with both climate change mitigation and effective messaging:

    Sustain and improve climate science — continue to investigate and report findings.
    Improve climate communications for non-experts — tell an easy-to-understand and cohesive story.
    Focus on reliability and affordability before mitigation — don’t undertake massive efforts that may disrupt existing energy transmission infrastructure.
    Adopt a “graceful” approach to decarbonization — consider impacts as broadly as possible.
    Don’t constrain energy supply in the developing world.
    Increase focus on developing and delivering alternative responses  — consider the potential ability to scale power generation, and delivery methods like nuclear energy.
    Mitigating climate risk requires political will, careful consideration, and an improved technical approach to energy policy, both concluded.

    “We have to learn to deal rationally with climate risk in a polarized society,” Koonin offered.

    The audience asked both speakers questions about impacts on nonhuman species (“We don’t know but we should,” both shared); nuclear fusion (“There isn’t enough tritium to effectively scale the widespread development of fusion-based energy; perhaps in 30 to 40 years,” Koonin suggested); and the planetary boundaries framework (“There’s good science underway in this space and I’m curious to see where it’s headed,” said Emanuel.) 

    “The event was a great success,” said Byrne, afterward. “The audience was engaged, and there was a good mix of faculty and students.”

    “One surprising thing,” Skow added, “was both Koonin and Emanuel were down on wind and solar power, [especially since] the idea that we need to transition to both is certainly in the air.”

    More conversations

    A second speaker series event, held earlier this month, was “Has Feminism Made Progress?” with Mary Harrington, author of “Feminism Against Progress,” and Anne McCants, MIT professor of history. An additional discussion planned for spring 2024 will cover the public health response to Covid-19.

    Discussions from the speaker series will appear as special episodes on “The Good Fight,” a podcast hosted by Johns Hopkins University political scientist Yascha Mounk.

    The Civil Discourse project is made possible due, in part, to funding from the Arthur Vining Davis Foundations and a collaboration between the MIT History Section and Concourse, a program featuring an integrated, cross-disciplinary approach to investigating some of humanity’s most interesting questions.

    The Civil Discourse initiative includes two components: the speaker series open to the MIT community, and seminars where students can discuss freedom of expression and develop skills for successfully engaging in civil discourse. More