More stories

  • in

    How to increase the rate of plastics recycling

    While recycling systems and bottle deposits have become increasingly widespread in the U.S., actual rates of recycling are “abysmal,” according to a team of MIT researchers who studied the rates for recycling of PET, the plastic commonly used in beverage bottles. However, their findings suggest some ways to change this.The present rate of recycling for PET, or polyethylene terephthalate, bottles nationwide is about 24 percent and has remained stagnant for a decade, the researchers say. But their study indicates that with a nationwide bottle deposit program, the rates could increase to 82 percent, with nearly two-thirds of all PET bottles being recycled into new bottles, at a net cost of just a penny a bottle when demand is robust. At the same time, they say, policies would be needed to ensure a sufficient demand for the recycled material.The findings are being published today in the Journal of Industrial Ecology, in a paper by MIT professor of materials science and engineering Elsa Olivetti, graduate students Basuhi Ravi and Karan Bhuwalka, and research scientist Richard Roth.The team looked at PET bottle collection and recycling rates in different states as well as other nations with and without bottle deposit policies, and with or without curbside recycling programs, as well as the inputs and outputs of various recycling companies and methods. The researchers say this study is the first to look in detail at the interplay between public policies and the end-to-end realities of the packaging production and recycling market.They found that bottle deposit programs are highly effective in the areas where they are in place, but at present there is not nearly enough collection of used bottles to meet the targets set by the packaging industry. Their analysis suggests that a uniform nationwide bottle deposit policy could achieve the levels of recycling that have been mandated by proposed legislation and corporate commitments.The recycling of PET is highly successful in terms of quality, with new products made from all-recycled material virtually matching the qualities of virgin material. And brands have shown that new bottles can be safely made with 100 percent postconsumer waste. But the team found that collection of the material is a crucial bottleneck that leaves processing plants unable to meet their needs. However, with the right policies in place, “one can be optimistic,” says Olivetti, who is the Jerry McAfee Professor in Engineering and the associate dean of the School of Engineering.“A message that we have found in a number of cases in the recycling space is that if you do the right work to support policies that think about both the demand but also the supply,” then significant improvements are possible, she says. “You have to think about the response and the behavior of multiple actors in the system holistically to be viable,” she says. “We are optimistic, but there are many ways to be pessimistic if we’re not thinking about that in a holistic way.”For example, the study found that it is important to consider the needs of existing municipal waste-recovery facilities. While expanded bottle deposit programs are essential to increase recycling rates and provide the feedstock to companies recycling PET into new products, the current facilities that process material from curbside recycling programs will lose revenue from PET bottles, which are a relatively high-value product compared to the other materials in the recycled waste stream. These companies would lose a source of their income if the bottles are collected through deposit programs, leaving them with only the lower-value mixed plastics.The researchers developed economic models based on rates of collection found in the states with deposit programs, recycled-content requirements, and other policies, and used these models to extrapolate to the nation as a whole. Overall, they found that the supply needs of packaging producers could be met through a nationwide bottle deposit system with a 10-cent deposit per bottle — at a net cost of about 1 cent per bottle produced when demand is strong. This need not be a federal program, but rather one where the implementation would be left up to the individual states, Olivetti says.Other countries have been much more successful in implementing deposit systems that result in very high participation rates. Several European countries manage to collect more than 90 percent of PET bottles for recycling, for example. But in the U.S., less than 29 percent are collected, and after losses in the recycling chain about 24 percent actually get recycled, the researchers found. Whereas 73 percent of Americans have access to curbside recycling, presently only 10 states have bottle deposit systems in place.Yet the demand is there so far. “There is a market for this material,” says Olivetti. While bottles collected through mixed-waste collection can still be recycled to some extent, those collected through deposit systems tend to be much cleaner and require less processing, and so are more economical to recycle into new bottles, or into textiles.To be effective, policies need to not just focus on increasing rates of recycling, but on the whole cycle of supply and demand and the different players involved, Olivetti says. Safeguards would need to be in place to protect existing recycling facilities from the lost revenues they would suffer as a result of bottle deposits, perhaps in the form of subsidies funded by fees on the bottle producers, to avoid putting these essential parts of the processing chain out of business. And other policies may be needed to ensure the continued market for the material that gets collected, including recycled content requirements and extended producer responsibility regulations, the team found.At this stage, it’s important to focus on the specific waste streams that can most effectively be recycled, and PET, along with many metals, clearly fit that category. “When we start to think about mixed plastic streams, that’s much more challenging from an environmental perspective,” she says. “Recycling systems need to be pursuing extended producers’ responsibility, or specifically thinking about materials designed more effectively toward recycled content,” she says.It’s also important to address “what the right metrics are to design for sustainably managed materials streams,” she says. “It could be energy use, could be circularity [for example, making old bottles into new bottles], could be around waste reduction, and making sure those are all aligned. That’s another kind of policy coordination that’s needed.” More

  • in

    Making climate models relevant for local decision-makers

    Climate models are a key technology in predicting the impacts of climate change. By running simulations of the Earth’s climate, scientists and policymakers can estimate conditions like sea level rise, flooding, and rising temperatures, and make decisions about how to appropriately respond. But current climate models struggle to provide this information quickly or affordably enough to be useful on smaller scales, such as the size of a city. Now, authors of a new open-access paper published in the Journal of Advances in Modeling Earth Systems have found a method to leverage machine learning to utilize the benefits of current climate models, while reducing the computational costs needed to run them. “It turns the traditional wisdom on its head,” says Sai Ravela, a principal research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) who wrote the paper with EAPS postdoc Anamitra Saha. Traditional wisdomIn climate modeling, downscaling is the process of using a global climate model with coarse resolution to generate finer details over smaller regions. Imagine a digital picture: A global model is a large picture of the world with a low number of pixels. To downscale, you zoom in on just the section of the photo you want to look at — for example, Boston. But because the original picture was low resolution, the new version is blurry; it doesn’t give enough detail to be particularly useful. “If you go from coarse resolution to fine resolution, you have to add information somehow,” explains Saha. Downscaling attempts to add that information back in by filling in the missing pixels. “That addition of information can happen two ways: Either it can come from theory, or it can come from data.” Conventional downscaling often involves using models built on physics (such as the process of air rising, cooling, and condensing, or the landscape of the area), and supplementing it with statistical data taken from historical observations. But this method is computationally taxing: It takes a lot of time and computing power to run, while also being expensive. A little bit of both In their new paper, Saha and Ravela have figured out a way to add the data another way. They’ve employed a technique in machine learning called adversarial learning. It uses two machines: One generates data to go into our photo. But the other machine judges the sample by comparing it to actual data. If it thinks the image is fake, then the first machine has to try again until it convinces the second machine. The end-goal of the process is to create super-resolution data. Using machine learning techniques like adversarial learning is not a new idea in climate modeling; where it currently struggles is its inability to handle large amounts of basic physics, like conservation laws. The researchers discovered that simplifying the physics going in and supplementing it with statistics from the historical data was enough to generate the results they needed. “If you augment machine learning with some information from the statistics and simplified physics both, then suddenly, it’s magical,” says Ravela. He and Saha started with estimating extreme rainfall amounts by removing more complex physics equations and focusing on water vapor and land topography. They then generated general rainfall patterns for mountainous Denver and flat Chicago alike, applying historical accounts to correct the output. “It’s giving us extremes, like the physics does, at a much lower cost. And it’s giving us similar speeds to statistics, but at much higher resolution.” Another unexpected benefit of the results was how little training data was needed. “The fact that that only a little bit of physics and little bit of statistics was enough to improve the performance of the ML [machine learning] model … was actually not obvious from the beginning,” says Saha. It only takes a few hours to train, and can produce results in minutes, an improvement over the months other models take to run. Quantifying risk quicklyBeing able to run the models quickly and often is a key requirement for stakeholders such as insurance companies and local policymakers. Ravela gives the example of Bangladesh: By seeing how extreme weather events will impact the country, decisions about what crops should be grown or where populations should migrate to can be made considering a very broad range of conditions and uncertainties as soon as possible.“We can’t wait months or years to be able to quantify this risk,” he says. “You need to look out way into the future and at a large number of uncertainties to be able to say what might be a good decision.”While the current model only looks at extreme precipitation, training it to examine other critical events, such as tropical storms, winds, and temperature, is the next step of the project. With a more robust model, Ravela is hoping to apply it to other places like Boston and Puerto Rico as part of a Climate Grand Challenges project.“We’re very excited both by the methodology that we put together, as well as the potential applications that it could lead to,” he says.  More

  • in

    Getting to systemic sustainability

    Add up the commitments from the Paris Agreement, the Glasgow Climate Pact, and various commitments made by cities, countries, and businesses, and the world would be able to hold the global average temperature increase to 1.9 degrees Celsius above preindustrial levels, says Ani Dasgupta, the president and chief executive officer of the World Resources Institute (WRI).While that is well above the 1.5 C threshold that many scientists agree would limit the most severe impacts of climate change, it is below the 2.0 degree threshold that could lead to even more catastrophic impacts, such as the collapse of ice sheets and a 30-foot rise in sea levels.However, Dasgupta notes, actions have so far not matched up with commitments.“There’s a huge gap between commitment and outcomes,” Dasgupta said during his talk, “Energizing the global transition,” at the 2024 Earth Day Colloquium co-hosted by the MIT Energy Initiative and MIT Department of Earth, Atmospheric and Planetary Sciences, and sponsored by the Climate Nucleus.Dasgupta noted that oil companies did $6 trillion worth of business across the world last year — $1 trillion more than they were planning. About 7 percent of the world’s remaining tropical forests were destroyed during that same time, he added, and global inequality grew even worse than before.“None of these things were illegal, because the system we have today produces these outcomes,” he said. “My point is that it’s not one thing that needs to change. The whole system needs to change.”People, climate, and natureDasgupta, who previously held positions in nonprofits in India and at the World Bank, is a recognized leader in sustainable cities, poverty alleviation, and building cultures of inclusion. Under his leadership, WRI, a global research nonprofit that studies sustainable practices with the goal of fundamentally transforming the world’s food, land and water, energy, and cities, adopted a new five-year strategy called “Getting the Transition Right for People, Nature, and Climate 2023-2027.” It focuses on creating new economic opportunities to meet people’s essential needs, restore nature, and rapidly lower emissions, while building resilient communities. In fact, during his talk, Dasgupta said that his organization has moved away from talking about initiatives in terms of their impact on greenhouse gas emissions — instead taking a more holistic view of sustainability.“There is no net zero without nature,” Dasgupta said. He showed a slide with a graphic illustrating potential progress toward net-zero goals. “If nature gets diminished, that chart becomes even steeper. It’s very steep right now, but natural systems absorb carbon dioxide. So, if the natural systems keep getting destroyed, that curve becomes harder and harder.”A focus on people is necessary, Dasgupta said, in part because of the unequal climate impacts that the rich and the poor are likely to face in the coming years. “If you made it to this room, you will not be impacted by climate change,” he said. “You have resources to figure out what to do about it. The people who get impacted are people who don’t have resources. It is immensely unfair. Our belief is, if we don’t do climate policy that helps people directly, we won’t be able to make progress.”Where to start?Although Dasgupta stressed that systemic change is needed to bring carbon emissions in line with long-term climate goals, he made the case that it is unrealistic to implement this change around the globe all at once. “This transition will not happen in 196 countries at the same time,” he said. “The question is, how do we get to the tipping point so that it happens at scale? We’ve worked the past few years to ask the question, what is it you need to do to create this tipping point for change?”Analysts at WRI looked for countries that are large producers of carbon, those with substantial tropical forest cover, and those with large quantities of people living in poverty. “We basically tried to draw a map of, where are the biggest challenges for climate change?” Dasgupta said.That map features a relative handful of countries, including the United States, Mexico, China, Brazil, South Africa, India, and Indonesia. Dasgupta said, “Our argument is that, if we could figure out and focus all our efforts to help these countries transition, that will create a ripple effect — of understanding technology, understanding the market, understanding capacity, and understanding the politics of change that will unleash how the rest of these regions will bring change.”Spotlight on the subcontinentDasgupta used one of these countries, his native India, to illustrate the nuanced challenges and opportunities presented by various markets around the globe. In India, he noted, there are around 3 million projected jobs tied to the country’s transition to renewable energy. However, that number is dwarfed by the 10 to 12 million jobs per year the Indian economy needs to create simply to keep up with population growth.“Every developing country faces this question — how to keep growing in a way that reduces their carbon footprint,” Dasgupta said.Five states in India worked with WRI to pool their buying power and procure 5,000 electric buses, saving 60 percent of the cost as a result. Over the next two decades, Dasgupta said, the fleet of electric buses in those five states is expected to increase to 800,000.In the Indian state of Rajasthan, Dasgupta said, 59 percent of power already comes from solar energy. At times, Rajasthan produces more solar than it can use, and officials are exploring ways to either store the excess energy or sell it to other states. But in another state, Jharkhand, where much of the country’s coal is sourced, only 5 percent of power comes from solar. Officials in Jharkhand have reached out to WRI to discuss how to transition their energy economy, as they recognize that coal will fall out of favor in the future, Dasgupta said.“The complexities of the transition are enormous in a country this big,” Dasgupta said. “This is true in most large countries.”The road aheadDespite the challenges ahead, the colloquium was also marked by notes of optimism. In his opening remarks, Robert Stoner, the founding director of the MIT Tata Center for Technology and Design, pointed out how much progress has been made on environmental cleanup since the first Earth Day in 1970. “The world was a very different, much dirtier, place in many ways,” Stoner said. “Our air was a mess, our waterways were a mess, and it was beginning to be noticeable. Since then, Earth Day has become an important part of the fabric of American and global society.”While Dasgupta said that the world presently lacks the “orchestration” among various stakeholders needed to bring climate change under control, he expressed hope that collaboration in key countries could accelerate progress.“I strongly believe that what we need is a very different way of collaborating radically — across organizations like yours, organizations like ours, businesses, and governments,” Dasgupta said. “Otherwise, this transition will not happen at the scale and speed we need.” More

  • in

    Q&A: Exploring ethnic dynamics and climate change in Africa

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa at MIT, and is also director of the Center for International Studies. During a semester-long sabbatical, he’s currently based at the African Climate and Development Initiative at the University of Cape Town.In this Q&A, Lieberman discusses several climate-related research projects he’s pursuing in South Africa and surrounding countries. This is part of an ongoing series exploring how the School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: South Africa is a nation whose political and economic development you have long studied and written about. Do you see this visit as an extension of the kind of research you have been pursuing, or a departure from it?A: Much of my previous work has been animated by the question of understanding the causes and consequences of group-based disparities, whether due to AIDS or Covid. These are problems that know no geographic boundaries, and where ethnic and racial minorities are often hardest hit. Climate change is an analogous problem, with these minority populations living in places where they are most vulnerable, in heat islands in cities, and in coastal areas where they are not protected. The reality is they might get hit much harder by longer-term trends and immediate shocks.In one line of research, I seek to understand how people in different African countries, in different ethnic groups, perceive the problems of climate change and their governments’ response to it. There are ethnic divisions of labor in terms of what people do — whether they are farmers or pastoralists, or live in cities. So some ethnic groups are simply more affected by drought or extreme weather than others, and this can be a basis for conflict, especially when competing for often limited government resources.In this area, just like in my previous research, learning what shapes ordinary citizen perspectives is really important, because these views affect people’s everyday practices, and the extent to which they support certain kinds of policies and investments their government makes in response to climate-related challenges. But I will also try to learn more about the perspectives of policymakers and various development partners who seek to balance climate-related challenges against a host of other problems and priorities.Q: You recently published “Until We Have Won Our Liberty,” which examines the difficult transition of South Africa from apartheid to a democratic government, scrutinizing in particular whether the quality of life for citizens has improved in terms of housing, employment, discrimination, and ethnic conflicts. How do climate change-linked issues fit into your scholarship?A: I never saw myself as a climate researcher, but a number of years ago, heavily influenced by what I was learning at MIT, I began to recognize more and more how important the issue of climate change is. And I realized there were lots of ways in which the climate problem resonated with other kinds of problems I had tackled in earlier parts of my work.There was once a time when climate and the environment was the purview primarily of white progressives: the “tree huggers.” And that’s really changed in recent decades as it has become evident that the people who’ve been most affected by the climate emergency are ethnic and racial minorities. We saw with Hurricane Katrina and other places [that] if you are Black, you’re more likely to live in a vulnerable area and to just generally experience more environmental harms, from pollution and emissions, leaving these communities much less resilient than white communities. Government has largely not addressed this inequity. When you look at American survey data in terms of who’s concerned about climate change, Black Americans, Hispanic Americans, and Asian Americans are more unified in their worries than are white Americans.There are analogous problems in Africa, my career research focus. Governments there have long responded in different ways to different ethnic groups. The research I am starting looks at the extent to which there are disparities in how governments try to solve climate-related challenges.Q: It’s difficult enough in the United States taking the measure of different groups’ perceptions of the impact of climate change and government’s effectiveness in contending with it. How do you go about this in Africa?A: Surprisingly, there’s only been a little bit of work done so far on how ordinary African citizens, who are ostensibly being hit the hardest in the world by the climate emergency, are thinking about this problem. Climate change has not been politicized there in a very big way. In fact, only 50 percent of Africans in one poll had heard of the term.In one of my new projects, with political science faculty colleague Devin Caughey and political science doctoral student Preston Johnston, we are analyzing social and climate survey data [generated by the Afrobarometer research network] from over 30 African countries to understand within and across countries the ways in which ethnic identities structure people’s perception of the climate crisis, and their beliefs in what government ought to be doing. In largely agricultural African societies, people routinely experience drought, extreme rain, and heat. They also lack the infrastructure that can shield them from the intense variability of weather patterns. But we’re adding a lens, which is looking at sources of inequality, especially ethnic differences.I will also be investigating specific sectors. Africa is a continent where in most places people cannot take for granted universal, piped access to clean water. In Cape Town, several years ago, the combination of failure to replace infrastructure and lack of rain caused such extreme conditions that one of the world’s most important cities almost ran out of water.While these studies are in progress, it is clear that in many countries, there are substantively large differences in perceptions of the severity of climate change, and attitudes about who should be doing what, and who’s capable of doing what. In several countries, both perceptions and policy preferences are differentiated along ethnic lines, more so than with respect to generational or class differences within societies.This is interesting as a phenomenon, but substantively, I think it’s important in that it may provide the basis for how politicians and government actors decide to move on allocating resources and implementing climate-protection policies. We see this kind of political calculation in the U.S. and we shouldn’t be surprised that it happens in Africa as well.That’s ultimately one of the challenges from the perch of MIT, where we’re really interested in understanding climate change, and creating technological tools and policies for mitigating the problem or adapting to it. The reality is frustrating. The political world — those who make decisions about whether to acknowledge the problem and whether to implement resources in the best technical way — are playing a whole other game. That game is about rewarding key supporters and being reelected.Q: So how do you go from measuring perceptions and beliefs among citizens about climate change and government responsiveness to those problems, to policies and actions that might actually reduce disparities in the way climate-vulnerable African groups receive support?A: Some of the work I have been doing involves understanding what local and national governments across Africa are actually doing to address these problems. We will have to drill down into government budgets to determine the actual resources devoted to addressing a challenge, what sorts of practices the government follows, and the political ramifications for governments that act aggressively versus those that don’t. With the Cape Town water crisis, for example, the government dramatically changed residents’ water usage through naming and shaming, and transformed institutional practices of water collection. They made it through a major drought by using much less water, and doing it with greater energy efficiency. Through the government’s strong policy and implementation, and citizens’ active responses, an entire city, with all its disparate groups, gained resilience. Maybe we can highlight creative solutions to major climate-related problems and use them as prods to push more effective policies and solutions in other places.In the MIT Global Diversity Lab, along with political science faculty colleague Volha Charnysh, political science doctoral student Jared Kalow, and Institute for Data, Systems and Society doctoral student Erin Walk, we are exploring American perspectives on climate-related foreign aid, asking survey respondents whether the U.S. should be giving more to people in the global South who didn’t cause the problems of climate change but have to suffer the externalities. We are particularly interested in whether people’s desire to help vulnerable communities rests on the racial or national identity of those communities.From my new seat as director of the Center for International Studies (CIS), I hope to do more and more to connect social science findings to relevant policymakers, whether in the U.S. or in other places. CIS is making climate one of our thematic priority areas, directing hundreds of thousands of dollars for MIT faculty to spark climate collaborations with researchers worldwide through the Global Seed Fund program. COP 28 (the U.N. Climate Change Conference), which I attended in December in Dubai, really drove home the importance of people coming together from around the world to exchange ideas and form networks. It was unbelievably large, with 85,000 people. But so many of us shared the belief that we are not doing enough. We need enforceable global solutions and innovation. We need ways of financing. We need to provide opportunities for journalists to broadcast the importance of this problem. And we need to understand the incentives that different actors have and what sorts of messages and strategies will resonate with them, and inspire those who have resources to be more generous. More

  • in

    Bringing an investigator’s eye to complex social challenges

    Anna Russo likes puzzles. They require patience, organization, and a view of the big picture. She brings an investigator’s eye to big institutional and societal challenges whose solutions can have wide-ranging, long-term impacts.

    Russo’s path to MIT began with questions. She didn’t have the whole picture yet. “I had no idea what I wanted to do with my life,” says Russo, who is completing her PhD in economics in 2024. “I was good at math and science and thought I wanted to be a doctor.”

    While completing her undergraduate studies at Yale University, where she double majored in economics and applied math, Russo discovered a passion for problem-solving, where she could apply an analytical lens to answering the kinds of thorny questions whose solutions could improve policy. “Empirical research is fun and exciting,” Russo says.

    After Yale, Russo considered what to do next. She worked as a full-time research assistant with MIT economist Amy Finkelstein. Russo’s work with Finkelstein led her toward identifying, studying, and developing answers to complex questions. 

    “My research combines ideas from two fields of economic inquiry — public finance and industrial organization — and applies them to questions about the design of environmental and health care policy,” Russo says. “I like the way economists think analytically about social problems.”

    Narrowing her focus

    Studying with and being advised by renowned economists as both an undergraduate and a doctoral student helped Russo narrow her research focus, fitting more pieces into the puzzle. “What drew me to MIT was its investment in its graduate students,” Russo says.

    Economic research meant digging into policy questions, identifying market failures, and proposing solutions. Doctoral study allowed Russo to assemble data to rigorously follow each line of inquiry.

    “Doctoral study means you get to write about something you’re really interested in,” Russo notes. This led her to study policy responses to climate change adaptation and mitigation. 

    “In my first year, I worked on a project exploring the notion that floodplain regulation design doesn’t do a good job of incentivizing the right level of development in flood-prone areas,” she says. “How can economists help governments convince people to act in society’s best interest?”

    It’s important to understand institutional details, Russo adds, which can help investigators identify and implement solutions. 

    “Feedback, advice, and support from faculty were crucial as I grew as a researcher at MIT,” she says. Beyond her two main MIT advisors, Finkelstein and economist Nikhil Agarwal — educators she describes as “phenomenal, dedicated advisors and mentors” — Russo interacted regularly with faculty across the department. 

    Russo later discovered another challenge she hoped to solve: inefficiencies in conservation and carbon offset programs. She set her sights on the United States Department of Agriculture’s Conservation Reserve Program because she believes it and programs like it can be improved. 

    The CRP is a land conservation plan administered by USDA’s Farm Service Agency. In exchange for a yearly rental payment, farmers enrolled in the program agree to remove environmentally sensitive land from agricultural production and plant species that will improve environmental health and quality.

    “I think we can tweak the program’s design to improve cost-effectiveness,” Russo says. “There’s a trove of data available.” The data include information like auction participants’ bids in response to well-specified auction rules, which Russo links to satellite data measuring land use outcomes. Understanding how landowners bid in CRP auctions can help identify and improve the program’s function. 

    “We may be able to improve targeting and achieve more cost-effective conservation by adjusting the CRP’s scoring system,” Russo argues. Opportunities may exist to scale the incremental changes under study for other conservation programs and carbon offset markets more generally.  

    Economics, Russo believes, can help us conceptualize problems and recommend effective alternative solutions.

    The next puzzle

    Russo wants to find her next challenge while continuing her research. She plans to continue her work as a junior fellow at the Harvard Society of Fellows, after which she’ll join the Harvard Department of Economics as an assistant professor. Russo also plans to continue helping other budding economists since she believes in the importance of supporting other students.   

    Russo’s advisors are some of her biggest supporters. 

    Finklestein emphasizes Russo’s curiosity, enthusiasm, and energy as key drivers in her success. “Her genuine curiosity and interest in getting to the bottom of a problem with the data — with an econometric analysis, with a modeling issue — is the best antidote for [the stress that can be associated with research],” Finklestein says. “It’s a key ingredient in her ability to produce important and credible work.”

    “She’s also incredibly generous with her time and advice,” Finklestein continues, “whether it’s helping an undergraduate research assistant with her senior thesis, or helping an advisor such as myself navigate a data access process she’s previously been through.”

    “Instead of an advisor-advisee relationship, working with her on a thesis felt more like a collaboration between equals,” Agarwal adds. “[She] has the maturity and smarts to produce pathbreaking research.

    “Doctoral study is an opportunity for students to find their paths collaboratively,” Russo says. “If I can help someone else solve a small piece of their puzzle, that’s a huge positive. Research is a series of many, many small steps forward.” 

    Identifying important causes for further investigation and study will always be important to Russo. “I also want to dig into some other market that’s not working well and figure out how to make it better,” she says. “Right now I’m really excited about understanding California wildfire mitigation.” 

    Puzzles are made to be solved, after all. More

  • in

    New major crosses disciplines to address climate change

    Lauren Aguilar knew she wanted to study energy systems at MIT, but before Course 1-12 (Climate System Science and Engineering) became a new undergraduate major, she didn’t see an obvious path to study the systems aspects of energy, policy, and climate associated with the energy transition.

    Aguilar was drawn to the new major that was jointly launched by the departments of Civil and Environmental Engineering (CEE) and Earth, Atmospheric and Planetary Sciences (EAPS) in 2023. She could take engineering systems classes and gain knowledge in climate.

    “Having climate knowledge enriches my understanding of how to build reliable and resilient energy systems for climate change mitigation. Understanding upon what scale we can forecast and predict climate change is crucial to build the appropriate level of energy infrastructure,” says Aguilar.

    The interdisciplinary structure of the 1-12 major has students engaging with and learning from professors in different disciplines across the Institute. The blended major was designed to provide a foundational understanding of the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge. Students learn the fundamental sciences through subjects like an atmospheric chemistry class focused on the global carbon cycle or a physics class on low-carbon energy systems. The major also covers topics in data science and machine learning as they relate to forecasting climate risks and building resilience, in addition to policy, economics, and environmental justice studies.

    Junior Ananda Figueiredo was one of the first students to declare the 1-12 major. Her decision to change majors stemmed from a motivation to improve people’s lives, especially when it comes to equality. “I like to look at things from a systems perspective, and climate change is such a complicated issue connected to many different pieces of our society,” says Figueiredo.

    A multifaceted field of study

    The 1-12 major prepares students with the necessary foundational expertise across disciplines to confront climate change. Andrew Babbin, an academic advisor in the new degree program and the Cecil and Ida Green Career Development Associate Professor in EAPS, says the new major harnesses rigorous training encompassing science, engineering, and policy to design and execute a way forward for society.

    Within its first year, Course 1-12 has attracted students with a diverse set of interests, ranging from machine learning for sustainability to nature-based solutions for carbon management to developing the next renewable energy technology and integrating it into the power system.

    Academic advisor Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering, says the best part of this degree is the students, and the enthusiasm and optimism they bring to the climate challenge.

    “We have students seeking to impact policy and students double-majoring in computer science. For this generation, climate change is a challenge for today, not for the future. Their actions inside and outside the classroom speak to the urgency of the challenge and the promise that we can solve it,” Howland says.

    The degree program also leaves plenty of space for students to develop and follow their interests. Sophomore Katherine Kempff began this spring semester as a 1-12 major interested in sustainability and renewable energy. Kempff was worried she wouldn’t be able to finish 1-12 once she made the switch to a different set of classes, but Howland assured her there would be no problems, based on the structure of 1-12.

    “I really like how flexible 1-12 is. There’s a lot of classes that satisfy the requirements, and you are not pigeonholed. I feel like I’m going to be able to do what I’m interested in, rather than just following a set path of a major,” says Kempff.

    Kempff is leveraging her skills she developed this semester and exploring different career interests. She is interviewing for sustainability and energy-sector internships in Boston and MIT this summer, and is particularly interested in assisting MIT in meeting its new sustainability goals.

    Engineering a sustainable future

    The new major dovetail’s MIT’s commitment to address climate change with its steps in prioritizing and enhancing climate education. As the Institute continues making strides to accelerate solutions, students can play a leading role in changing the future.   

    “Climate awareness is critical to all MIT students, most of whom will face the consequences of the projection models for the end of the century,” says Babbin. “One-12 will be a focal point of the climate education mission to train the brightest and most creative students to engineer a better world and understand the complex science necessary to design and verify any solutions they invent.”

    Justin Cole, who transferred to MIT in January from the University of Colorado, served in the U.S. Air Force for nine years. Over the course of his service, he had a front row seat to the changing climate. From helping with the wildfire cleanup in Black Forest, Colorado — after the state’s most destructive fire at the time — to witnessing two category 5 typhoons in Japan in 2018, Cole’s experiences of these natural disasters impressed upon him that climate security was a prerequisite to international security. 

    Cole was recently accepted into the MIT Energy and Climate Club Launchpad initiative where he will work to solve real-world climate and energy problems with professionals in industry.

    “All of the dots are connecting so far in my classes, and all the hopes that I have for studying the climate crisis and the solutions to it at MIT are coming true,” says Cole.

    With a career path that is increasingly growing, there is a rising demand for scientists and engineers who have both deep knowledge of environmental and climate systems and expertise in methods for climate change mitigation.

    “Climate science must be coupled with climate solutions. As we experience worsening climate change, the environmental system will increasingly behave in new ways that we haven’t seen in the past,” says Howland. “Solutions to climate change must go beyond good engineering of small-scale components. We need to ensure that our system-scale solutions are maximally effective in reducing climate change, but are also resilient to climate change. And there is no time to waste,” he says. More

  • in

    Q&A: Claire Walsh on how J-PAL’s King Climate Action Initiative tackles the twin climate and poverty crises

    The King Climate Action Initiative (K-CAI) is the flagship climate change program of the Abdul Latif Jameel Poverty Action Lab (J-PAL), which innovates, tests, and scales solutions at the nexus of climate change and poverty alleviation, together with policy partners worldwide.

    Claire Walsh is the associate director of policy at J-PAL Global at MIT. She is also the project director of K-CAI. Here, Walsh talks about the work of K-CAI since its launch in 2020, and describes the ways its projects are making a difference. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.

    Q: According to the King Climate Action Initiative (K-CAI), any attempt to address poverty effectively must also simultaneously address climate change. Why is that?

    A: Climate change will disproportionately harm people in poverty, particularly in low- and middle-income countries, because they tend to live in places that are more exposed to climate risk. These are nations in sub-Saharan Africa and South and Southeast Asia where low-income communities rely heavily on agriculture for their livelihoods, so extreme weather — heat, droughts, and flooding — can be devastating for people’s jobs and food security. In fact, the World Bank estimates that up to 130 million more people may be pushed into poverty by climate change by 2030.

    This is unjust because these countries have historically emitted the least; their people didn’t cause the climate crisis. At the same time, they are trying to improve their economies and improve people’s welfare, so their energy demands are increasing, and they are emitting more. But they don’t have the same resources as wealthy nations for mitigation or adaptation, and many developing countries understandably don’t feel eager to put solving a problem they didn’t create at the top of their priority list. This makes finding paths forward to cutting emissions on a global scale politically challenging.

    For these reasons, the problems of enhancing the well-being of people experiencing poverty, addressing inequality, and reducing pollution and greenhouse gases are inextricably linked.

    Q: So how does K-CAI tackle this hybrid challenge?

    A: Our initiative is pretty unique. We are a competitive, policy-based research and development fund that focuses on innovating, testing, and scaling solutions. We support researchers from MIT and other universities, and their collaborators, who are actually implementing programs, whether NGOs [nongovernmental organizations], government, or the private sector. We fund pilots of small-scale ideas in a real-world setting to determine if they hold promise, followed by larger randomized, controlled trials of promising solutions in climate change mitigation, adaptation, pollution reduction, and energy access. Our goal is to determine, through rigorous research, if these solutions are actually working — for example, in cutting emissions or protecting forests or helping vulnerable communities adapt to climate change. And finally, we offer path-to-scale grants which enable governments and NGOs to expand access to programs that have been tested and have strong evidence of impact.

    We think this model is really powerful. Since we launched in 2020, we have built a portfolio of over 30 randomized evaluations and 13 scaling projects in more than 35 countries. And to date, these projects have informed the scale ups of evidence-based climate policies that have reached over 15 million people.

    Q: It seems like K-CAI is advancing a kind of policy science, demanding proof of a program’s capacity to deliver results at each stage. 

    A: This is one of the factors that drew me to J-PAL back in 2012. I majored in anthropology and studied abroad in Uganda. From those experiences I became very passionate about pursuing a career focused on poverty reduction. To me, it is unfair that in a world full of so much wealth and so much opportunity there exists so much extreme poverty. I wanted to dedicate my career to that, but I’m also a very detail-oriented nerd who really cares about whether a program that claims to be doing something for people is accomplishing what it claims.

    It’s been really rewarding to see demand from governments and NGOs for evidence-informed policymaking grow over my 12 years at J-PAL. This policy science approach holds exciting promise to help transform public policy and climate policy in the coming decades.  

    Q: Can you point to K-CAI-funded projects that meet this high bar and are now making a significant impact?

    A: Several examples jump to mind. In the state of Gujarat, India, pollution regulators are trying to cut particulate matter air pollution, which is devastating to human health. The region is home to many major industries whose emissions negatively affect most of the state’s 70 million residents.

    We partnered with state pollution regulators — kind of a regional EPA [Environmental Protection Agency] — to test an emissions trading scheme that is used widely in the U.S. and Europe but not in low- and middle-income countries. The government monitors pollution levels using technology installed at factories that sends data in real time, so the regulator knows exactly what their emissions look like. The regulator sets a cap on the overall level of pollution, allocates permits to pollute, and industries can trade emissions permits.

    In 2019, researchers in the J-PAL network conducted the world’s first randomized, controlled trial of this emissions trading scheme and found that it cut pollution by 20 to 30 percent — a surprising reduction. It also reduced firms’ costs, on average, because the costs of compliance went down. The state government was eager to scale up the pilot, and in the past two years, two other cities, including Ahmedabad, the biggest city in the state, have adopted the concept.

    We are also supporting a project in Niger, whose economy is hugely dependent on rain-fed agriculture but with climate change is experiencing rapid desertification. Researchers in the J-PAL network have been testing training farmers in a simple, inexpensive rainwater harvesting technique, where farmers dig a half-moon-shaped hole called a demi-lune right before the rainy season. This demi-lune feeds crops that are grown directly on top of it, and helps return land that resembled flat desert to arable production.

    Researchers found that training farmers in this simple technology increased adoption from 4 percent to 94 percent and that demi-lunes increased agricultural output and revenue for farmers from the first year. K-CAI is funding a path-to-scale grant so local implementers can teach this technique to over 8,000 farmers and build a more cost-effective program model. If this takes hold, the team will work with local partners to scale the training to other relevant regions of the country and potentially other countries in the Sahel.

    One final example that we are really proud of, because we first funded it as a pilot and now it’s in the path to scale phase: We supported a team of researchers working with partners in Bangladesh trying to reduce carbon emissions and other pollution from brick manufacturing, an industry that generates 17 percent of the country’s carbon emissions. The scale of manufacturing is so great that at some times of year, Dhaka (the capital of Bangladesh) looks like Mordor.

    Workers form these bricks and stack hundreds of thousands of them, which they then fire by burning coal. A team of local researchers and collaborators from our J-PAL network found that you can reduce the amount of coal needed for the kilns by making some low-cost changes to the manufacturing process, including stacking the bricks in a way that increases airflow in the kiln and feeding the coal fires more frequently in smaller rather than larger batches.

    In the randomized, controlled trial K-CAI supported, researchers found that this cut carbon and pollution emissions significantly, and now the government has invited the team to train 1,000 brick manufacturers in Dhaka in these techniques.

    Q: These are all fascinating and powerful instances of implementing ideas that address a range of problems in different parts of the world. But can K-CAI go big enough and fast enough to take a real bite out of the twin poverty and climate crisis?

    A: We’re not trying to find silver bullets. We are trying to build a large playbook of real solutions that work to solve specific problems in specific contexts. As you build those up in the hundreds, you have a deep bench of effective approaches to solve problems that can add up in a meaningful way. And because J-PAL works with governments and NGOs that have the capacity to take the research into action, since 2003, over 600 million people around the world have been reached by policies and programs that are informed by evidence that J-PAL-affiliated researchers produced. While global challenges seem daunting, J-PAL has shown that in 20 years we can achieve a great deal, and there is huge potential for future impact.

    But unfortunately, globally, there is an underinvestment in policy innovation to combat climate change that may generate quicker, lower-cost returns at a large scale — especially in policies that determine which technologies get adopted or commercialized. For example, a lot of the huge fall in prices of renewable energy was enabled by early European government investments in solar and wind, and then continuing support for innovation in renewable energy.

    That’s why I think social sciences have so much to offer in the fight against climate change and poverty; we are working where technology meets policy and where technology meets real people, which often determines their success or failure. The world should be investing in policy, economic, and social innovation just as much as it is investing in technological innovation.

    Q: Do you need to be an optimist in your job?

    A: I am half-optimist, half-pragmatist. I have no control over the climate change outcome for the world. And regardless of whether we can successfully avoid most of the potential damages of climate change, when I look back, I’m going to ask myself, “Did I fight or not?” The only choice I have is whether or not I fought, and I want to be a fighter. More

  • in

    A delicate dance

    In early 2022, economist Catherine Wolfram was at her desk in the U.S. Treasury building. She could see the east wing of the White House, just steps away.

    Russia had just invaded Ukraine, and Wolfram was thinking about Russia, oil, and sanctions. She and her colleagues had been tasked with figuring out how to restrict the revenues that Russia was using to fuel its brutal war while keeping Russian oil available and affordable to the countries that depended on it.

    Now the William F. Pounds Professor of Energy Economics at MIT, Wolfram was on leave from academia to serve as deputy assistant secretary for climate and energy economics.

    Working for Treasury Secretary Janet L. Yellen, Wolfram and her colleagues developed dozens of models and forecasts and projections. It struck her, she said later, that “huge decisions [affecting the global economy] would be made on the basis of spreadsheets that I was helping create.” Wolfram composed a memo to the Biden administration and hoped her projections would pan out the way she believed they would.

    Tackling conundrums that weigh competing, sometimes contradictory, interests has defined much of Wolfram’s career.

    Wolfram specializes in the economics of energy markets. She looks at ways to decarbonize global energy systems while recognizing that energy drives economic development, especially in the developing world.

    “The way we’re currently making energy is contributing to climate change. There’s a delicate dance we have to do to make sure that we treat this important industry carefully, but also transform it rapidly to a cleaner, decarbonized system,” she says.

    Economists as influencers

    While Wolfram was growing up in a suburb of St. Paul, Minnesota, her father was a law professor and her mother taught English as a second language. Her mother helped spawn Wolfram’s interest in other cultures and her love of travel, but it was an experience closer to home that sparked her awareness of the effect of human activities on the state of the planet.

    Minnesota’s nickname is “Land of 10,000 Lakes.” Wolfram remembers swimming in a nearby lake sometimes covered by a thick sludge of algae. “Thinking back on it, it must’ve had to do with fertilizer runoff,” she says. “That was probably the first thing that made me think about the environment and policy.”

    In high school, Wolfram liked “the fact that you could use math to understand the world. I also was interested in the types of questions about human behavior that economists were thinking about.

    “I definitely think economics is good at sussing out how different actors are likely to react to a particular policy and then designing policies with that in mind.”

    After receiving a bachelor’s degree in economics from Harvard University in 1989, Wolfram worked with a Massachusetts agency that governed rate hikes for utilities. Seeing its reliance on research, she says, illuminated the role academics could play in policy setting. It made her think she could make a difference from within academia.

    While pursuing a PhD in economics from MIT, Wolfram counted Paul L. Joskow, the Elizabeth and James Killian Professor of Economics and former director of the MIT Center for Energy and Environmental Policy Research, and Nancy L. Rose, the Charles P. Kindleberger Professor of Applied Economics, among her mentors and influencers.

    After spending 1996 to 2000 as an assistant professor of economics at Harvard, she joined the faculty at the Haas School of Business at the University of California at Berkeley.

    At Berkeley, it struck Wolfram that while she labored over ways to marginally boost the energy efficiency of U.S. power plants, the economies of China and India were growing rapidly, with a corresponding growth in energy use and carbon dioxide emissions. “It hit home that to understand the climate issue, I needed to understand energy demand in the developing world,” she says.

    The problem was that the developing world didn’t always offer up the kind of neatly packaged, comprehensive data economists relied on. She wondered if, by relying on readily accessible data, the field was looking under the lamppost — while losing sight of what the rest of the street looked like.

    To make up for a lack of available data on the state of electrification in sub-Saharan Africa, for instance, Wolfram developed and administered surveys to individual, remote rural households using on-the-ground field teams.

    Her results suggested that in the world’s poorest countries, the challenges involved in expanding the grid in rural areas should be weighed against potentially greater economic and social returns on investments in the transportation, education, or health sectors.

    Taking the lead

    Within months of Wolfram’s memo to the Biden administration, leaders of the intergovernmental political forum Group of Seven (G7) agreed to the price cap. Tankers from coalition countries would only transport Russian crude sold at or below the price cap level, initially set at $60 per barrel.

    “A price cap was not something that had ever been done before,” Wolfram says. “In some ways, we were making it up out of whole cloth. It was exciting to see that I wrote one of the original memos about it, and then literally three-and-a-half months later, the G7 was making an announcement.

    “As economists and as policymakers, we must set the parameters and get the incentives right. The price cap was basically asking developing countries to buy cheap oil, which was consistent with their incentives.”

    In May 2023, the U.S. Department of the Treasury reported that despite widespread initial skepticism about the price cap, market participants and geopolitical analysts believe it is accomplishing its goals of restricting Russia’s oil revenues while maintaining the supply of Russian oil and keeping energy costs in check for consumers and businesses around the world.

    Wolfram held the U.S. Treasury post from March 2021 to October 2022 while on leave from UC Berkeley. In July 2023, she joined MIT Sloan School of Management partly to be geographically closer to the policymakers of the nation’s capital. She’s also excited about the work taking place elsewhere at the Institute to stay ahead of climate change.

    Her time in D.C. was eye-opening, particularly in terms of the leadership power of the United States. She worries that the United States is falling prey to “lost opportunities” in terms of addressing climate change. “We were showing real leadership on the price cap, and if we could only do that on climate, I think we could make faster inroads on a global agreement,” she says.

    Now focused on structuring global agreements in energy policy among developed and developing countries, she’s considering how the United States can take advantage of its position as a world leader. “We need to be thinking about how what we do in the U.S. affects the rest of the world from a climate perspective. We can’t go it alone.

    “The U.S. needs to be more aligned with the European Union, Canada, and Japan to try to find areas where we’re taking a common approach to addressing climate change,” she says. She will touch on some of those areas in the class she will teach in spring 2024 titled “Climate and Energy in the Global Economy,” offered through MIT Sloan.

    Looking ahead, she says, “I’m a techno optimist. I believe in human innovation. I’m optimistic that we’ll find ways to live with climate change and, hopefully, ways to minimize it.”

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More