in

A call for refining the role of humic-like substances in the oceanic iron cycle

  • 1.

    Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 49, 463–507 (2001).

  • 2.

    Tagliabue, A., Aumont, O. & Bopp, L. The impact of different external sources of iron on the global carbon cycle. Geophysical Research Letters 41, 920–926 (2014).

  • 3.

    Bruland, K. W., Middag, R. & Lohan, M. C. In Treatise on Geochemistry Vol. 8 (ed. Holland, H. D. & Turekian, K.) 19–51 (Elsevier, 2014).

  • 4.

    Tagliabue, A. et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? Global Biogeochemical Cycles 30, 149–174 (2016).

  • 5.

    Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front Microbiol 3 (2012).

  • 6.

    Hopkinson, B. M. & Morel, F. M. M. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals 22, 659–669 (2009).

  • 7.

    Boiteau, R. M. et al. Patterns of iron and siderophore distributions across the California Current System. Limnology and Oceanography 64, 376–389 (2019).

  • 8.

    Bundy, R. M. et al. Distinct siderophores contribute to iron cycling in the mesopelagic at station ALOHA. Frontiers in Marine Science 5 (2018).

  • 9.

    Hassler, C. S. et al. Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton. Marine Chemistry 173, 136–147 (2015).

  • 10.

    Zigah, P. K. et al. Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes. Geophysical Research Letters 44, 2407–2415 (2017).

  • 11.

    Croot, P. L. & Johansson, M. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2‐(2‐Thiazolylazo)‐p‐cresol (TAC). Electroanalysis 12, 565–576 (2000).

  • 12.

    Dulaquais, G. et al. The biogeochemistry of electroactive humic substances and its connection to iron chemistry in the North East Atlantic and the Western Mediterranean Sea. Journal of Geophysical Research: Oceans (2018).

  • 13.

    Laglera, L. M. & van den Berg, C. M. G. Evidence for geochemical control of iron by humic substances in seawater. Limnology and Oceanography 54, 610–619 (2009).

  • 14.

    Batchelli, S., Muller, F. L. L., Chang, K.-C. & Lee, C.-L. Evidence for strong but dynamic iron–humic colloidal associations in humic-rich coastal waters. Environmental Science & Technology 44, 8485–8490 (2010).

  • 15.

    Zhang, Y., Du, J., Ding, X. & Zhang, F. Comparison study of sedimentary humic substances isolated from contrasting coastal marine environments by chemical and spectroscopic analysis. Environmental Earth Sciences 75, 378 (2016).

  • 16.

    Sarma, N. S. et al. Hydrothermal alteration promotes humic acid formation in sediments: a case study of the Central Indian Ocean Basin. Journal of Geophysical Research: Oceans 123, 110–130 (2018).

    • ADS
    • Google Scholar
  • 17.

    Calace, N., Cantafora, E., Mirante, S., Petronio, B. M. & Pietroletti, M. Transport and modification of humic substances present in Antarctic snow and ancient ice. Journal of Environmental Monitoring 7, 1320–1325 (2005).

  • 18.

    Gelencsér, A. et al. On the possible origin of humic matter in fine continental aerosol. Journal of Geophysical Research: Atmospheres 107, ACH 2-1-ACH 2-6 (2002).

  • 19.

    Hioki, N. et al. Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean. Scientific Reports 4, 6775 (2014).

  • 20.

    Kinniburgh, D. G. et al. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151, 147–166 (1999).

  • 21.

    Krachler, R. et al. River-derived humic substances as iron chelators in seawater. Marine Chemistry 174, 85–93 (2015).

  • 22.

    Kikuchi, T. et al. Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan. Science of The Total Environment 576, 36–45 (2017).

  • 23.

    Bailey, G. W. Life after death: Lignin‐humic relationships reexamined. Critical Reviews in Environmental Science and Technology 26, 95–153 (1996).

    • Article
    • Google Scholar
  • 24.

    Harvey, G. R., Boran, D. A., Chesal, L. A. & Tokar, J. M. The structure of marine fulvic and humic acids. Marine Chemistry 12, 119–132 (1983).

  • 25.

    Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochimica et Cosmochimica Acta 70, 2990–3010 (2006).

  • 26.

    Hatcher, P. G., Maciel, G. E. & Dennis, L. W. Aliphatic structure of humic acids; a clue to their origin. Organic Geochemistry 3, 43–48 (1981).

  • 27.

    Sukekava, C., Downes, J., Slagter, H. A., Gerringa, L. J. A. & Laglera, L. M. Determination of the contribution of humic substances to iron complexation in seawater by catalytic cathodic stripping voltammetry. Talanta 189, 359–364 (2018).

  • 28.

    Stuermer, D. H. & Harvey, G. R. The isolation of humic substances and alcohol-soluble organic matter from seawater. Deep Sea Research 24, 303–309 (1977).

  • 29.

    Timko, S. et al. Depth-dependent photodegradation of marine dissolved organic matter. Frontiers in Marine Science 2 (2015).

  • 30.

    Nelson, N. B., Siegel, D. A., Carlson, C. A. & Swan, C. M. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophysical Research Letters 37 (2010).

  • 31.

    Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–248 (1987).

  • 32.

    Álvarez-Salgado, X. A. et al. New insights on the mineralization of dissolved organic matter in central, intermediate, and deep water masses of the northeast North Atlantic. Limnology and Oceanography 58, 681–696 (2013).

  • 33.

    Benner, R., Louchouarn, P. & Amon, R. M. W. Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Global Biogeochemical Cycles 19 (2005).

  • 34.

    Nelson, N. B. & Gauglitz, J. M. Optical signatures of dissolved organic matter transformation in the global ocean. Frontiers in Marine Science 2 (2016).

  • 35.

    Kothawala, D. N., von Wachenfeldt, E., Koehler, B. & Tranvik, L. J. Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Science of The Total Environment 433, 238–246 (2012).

  • 36.

    Rijkenberg, M. J. A., Slagter, H. A., Rutgers van der Loeff, M., van Ooijen, J. & Gerringa, L. J. A. Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the Nansen Basin. Frontiers in Marine Science 5 (2018).

  • 37.

    Romera-Castillo, C., Sarmento, H., Alvarez-Salgado, X. A., Gasol, J. M. & Marrase, C. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microb 77, 7490–7498 (2011).

  • 38.

    Kitayama, S. et al. Controls on iron distributions in the deep water column of the North Pacific Ocean: Iron(III) hydroxide solubility and marine humic-type dissolved organic matter. Journal of Geophysical Research-Oceans 114 (2009).

  • 39.

    Stedmon, C. A. & Nelson, N. B. In Biogeochemistry of Marine Dissolved Organic Matter (Second Edition) (eds Dennis A. Hansell & Craig A. Carlson) 481–508 (Academic Press, 2015).

  • 40.

    Heller, M. I., Gaiero, D. M. & Croot, P. L. Basin scale survey of marine humic fluorescence in the Atlantic: Relationship to iron solubility and H2O2. Global Biogeochemical Cycles 27, 88–100 (2013).

  • 41.

    Buck, K. N., Sohst, B. & Sedwick, P. N. The organic complexation of dissolved iron along the U.S. GEOTRACES (GA03) North Atlantic Section. Deep Sea Research Part II: Topical Studies in Oceanography 116, 152–165 (2015).

  • 42.

    Buck, K. N., Sedwick, P. N., Sohst, B. & Carlson, C. A. Organic complexation of iron in the eastern tropical South Pacific: Results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16). Marine Chemistry 201, 229–241 (2018).

  • 43.

    Gerringa, L. J. A. et al. Dissolved Fe and Fe-binding organic ligands in the Mediterranean Sea – GEOTRACES G04. Marine Chemistry 194, 100–113 (2017).

  • 44.

    Abualhaija, M. M., Whitby, H. & van den Berg, C. M. G. Competition between copper and iron for humic ligands in estuarine waters. Marine Chemistry 172, 46–56 (2015).

  • 45.

    Slagter, H. A. et al. Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM. Marine Chemistry 197, 11–25 (2017).

  • 46.

    Hiemstra, T. & van Riemsdijk, W. H. Biogeochemical speciation of Fe in ocean water. Marine Chemistry 102, 181–197, https://doi.org/10.1016/j.marchem.2006.03.008 (2006).

  • 47.

    Tipping, E., Rey-Castro, C., Bryan, S. E. & Hamilton-Taylor, J. Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta 66, 3211–3224, https://doi.org/10.1016/S0016-7037(02)00930-4 (2002).

  • 48.

    Avendaño, L., Gledhill, M., Achterberg, E. P., Rérolle, V. M. C. & Schlosser, C. Influence of ocean acidification on the organic complexation of iron and copper in Northwest European shelf seas; a combined observational and model study. Frontiers in Marine Science 3, https://doi.org/10.3389/fmars.2016.00058 (2016).

  • 49.

    Boye, M. et al. The chemical speciation of iron in the north-east Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 53, 667–683 (2006).

  • 50.

    Gerringa, L. J. A. et al. Fe-binding dissolved organic ligands near the Kerguelen Archipelago in the Southern Ocean (Indian sector). Deep-Sea Res Pt Ii 55, 606–621 (2008).

  • 51.

    Martin, J. H. Glacial-Interglacial CO2 Change: The Iron Hypothesis. Paleoceanography 5, 1–13 (1990).

  • 52.

    Schlünz, B., Schneider, R. R., Müller, P. J., Showers, W. J. & Wefer, G. Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chemical Geology 159, 263–281, https://doi.org/10.1016/S0009-2541(99)00041-8 (1999).

  • 53.

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochemical Cycles 19 (2005).

  • 54.

    Shaffer, G. & Lambert, F. In and out of glacial extremes by way of dust−climate feedbacks. Proceedings of the National Academy of Sciences 115, 2026–2031 (2018).

  • 55.

    Cutter, G. A. & Bruland, K. W. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnology and Oceanography: Methods 10, 425–436 (2012).

    • CAS
    • Google Scholar
  • 56.

    Measures, C. I., Landing, W. M., Brown, M. T. & Buck, C. S. A commercially available rosette system for trace metal-clean sampling. Limnology and Oceanography-Methods 6, 384–394 (2008).

  • 57.

    Bruland, K. W., Rue, E. L., Smith, G. J. & DiTullio, G. R. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Marine Chemistry 93, 81–103 (2005).

  • 58.

    Bowie, A. R. et al. Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles 23 (2009).

  • 59.

    Cutter, G. et al. Sampling and sample-handling protocols for GEOTRACES cruises (2010).

  • 60.

    Buck, K. N. et al. The organic complexation of iron and copper: an intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques. Limnology and Oceanography-Methods 10, 496–515 (2012).

  • 61.

    Lagerström, M. E. et al. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: Application to the GEOTRACES program. Marine Chemistry 155, 71–80 (2013).

  • 62.

    Tonnard, M. et al. Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01). Biogeosciences 17(4), 917-943 (2020).

  • 63.

    Quéroué, F. et al. High variability in dissolved iron concentrations in the vicinity of the Kerguelen Islands (Southern Ocean). Biogeosciences 12, 3869–3883 (2015).

  • 64.

    Jackson, S. L., Spence, J., Janssen, D. J., Ross, A. R. S. & Cullen, J. T. Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP-MS/MS. Journal of Analytical Atomic Spectrometry 33, 304–313 (2018).

  • 65.

    Whitby, H. & van den Berg, C. M. G. Evidence for copper-binding humic substances in seawater. Marine Chemistry 173, 282–290 (2015).

  • 66.

    Whitby, H., Posacka, A. M., Maldonado, M. T. & van den Berg, C. M. G. Copper-binding ligands in the NE Pacific. Marine Chemistry 204, 36–48 (2018).

  • 67.

    Omanovic, D., Gamier, C. & Pizeta, I. ProMCC: An all-in-one tool for trace metal complexation studies. Marine Chemistry 173, 25–39 (2015).

  • 68.

    Laglera, L. M., Battaglia, G. & van den Berg, C. M. G. Effect of humic substances on the iron speciation in natural waters by CLE/CSV. Marine Chemistry 127, 134–143 (2011).

  • 69.

    Powell, R. T. & Donat, J. R. Organic complexation and speciation of iron in the South and Equatorial Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography 48, 2877–2893 (2001).

  • 70.

    Witter, A. E., Lewis, B. L. & Luther, G. W. III. Iron speciation in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography 47, 1517–1539 (2000).

  • 71.

    Boye, M. et al. Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean. Marine Chemistry 80, 129–143 (2003).

  • 72.

    Boye, M. et al. Organic complexation of iron in the Southern Ocean. Deep Sea Research Part I: Oceanographic Research Papers 48, 1477–1497 (2001).

  • 73.

    Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Marine Chemistry 50, 117–138 (1995).

  • 74.

    Nolting, R. F., Gerringa, L. J. A., Swagerman, M. J. W., Timmermans, K. R. & de Baar, H. J. W. Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean. Marine Chemistry 62, 335–352 (1998).

  • 75.

    Gledhill, M. & van den Berg, C. M. G. Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Marine Chemistry 47, 41–54 (1994).

  • 76.

    Gledhill, M., van den Berg, C. M. G., Nolting, R. F. & Timmermans, K. R. Variability in the speciation of iron in the northern North Sea. Marine Chemistry 59, 283–300 (1998).

  • 77.

    Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography 39, 1903–1916 (1994).

  • 78.

    Coble, P. G. Marine optical biogeochemistry:  the chemistry of ocean color. Chemical Reviews 107, 402–418 (2007).

  • 79.

    Kowalczuk, P., Tilstone, G. H., Zabłocka, M., Röttgers, R. & Thomas, R. Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and Parallel Factor Analysis. Marine Chemistry 157, 170–184 (2013).

  • 80.

    Coble, P. G., Del Castillo, C. E. & Avril, B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography 45, 2195–2223 (1998).

  • 81.

    Stedmon, C. A. & Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography 50, 686–697 (2005).

  • 82.

    Stedmon, C. A., Markager, S. & Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82, 239–254 (2003).

  • 83.

    Parlanti, E., Wörz, K., Geoffroy, L. & Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31, 1765–1781 (2000).

  • 84.

    Sierra, M. M. D., Giovanela, M., Parlanti, E. & Soriano-Sierra, E. J. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 58, 715–733 (2005).


  • Source: Ecology - nature.com

    Titan’s missing river deltas and an Earthly climate connection

    Nest boxes do not cause a shift in bat community composition in an urbanised landscape