in

Assessing the current and potential future distribution of four invasive forest plants in Minnesota, U.S.A., using mixed sources of data

  • 1.

    Chornesky, E. A. et al. Science priorities for reducing the threat of invasive species to sustainable forestry. Bioscience 55, 335–348 (2005).

    Google Scholar 

  • 2.

    Holmes, T. P., Aukema, J. E., Von Holle, B., Liebhold, A. & Sills, E. Economic impacts of invasive species in forests. Ann. N. Y. Acad. Sci. 1162, 18–38 (2009).

    ADS  PubMed  Google Scholar 

  • 3.

    Oswalt, C. M., Oswalt, S. N. & Clatterbuck, W. K. Effects of Microstegium Vimineum (Trin.) A. Camus on native woody species density and diversity in a productive mixed-hardwood forest in Tennessee. For. Ecol. Manag. 242, 727–732 (2007).

    Google Scholar 

  • 4.

    Gould, A. M. A. & Gorchov, D. L. Effects of the exotic invasive shrub Lonicera maackii on the survival and fecundity of Three species of Native annuals. Am. Midland Nat. https://doi.org/10.1674/0003-0031(2000)144[0036:EOTEIS]2.0.CO;2144,36-50 (2000).

    Article  Google Scholar 

  • 5.

    Gorchov, D. L. & Trisel, D. E. Competitive effects of the invasive shrub, Lonicera maackii (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings. Plant Ecol. 166, 13–24 (2003).

    Google Scholar 

  • 6.

    Mattos, K. J. & Orrock, J. L. Behavioral consequences of plant invasion: an invasive plant alters rodent antipredator behavior. Behav. Ecol. 21, 556–561 (2010).

    Google Scholar 

  • 7.

    Dutra, H. P., Barnett, K., Reinhardt, J. R., Marquis, R. J. & Orrock, J. L. Invasive plant species alters consumer behavior by providing refuge from predation. Oecologia 166, 649–657 (2011).

    ADS  PubMed  Google Scholar 

  • 8.

    Moser, W. K. et al. Impacts of nonnative invasive species on US forests and recommendations for policy and management. J. For. 107, 320–327 (2009).

    Google Scholar 

  • 9.

    Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    PubMed  Google Scholar 

  • 10.

    Sanford, N. L., Harrington, R. A. & Fownes, J. H. Survival and growth of native and alien woody seedlings in open and understory environments. For. Ecol. Manag. 183, 377–385 (2003).

    Google Scholar 

  • 11.

    Knight, K. S., Kurylo, J. S., Endress, A. G., Stewart, J. R. & Reich, P. B. Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): A review. Biol. Invas. 9, 925–937 (2007).

    Google Scholar 

  • 12.

    Stewart, J. R. & Graves, W. R. Photosynthesis and growth of Rhamnus caroliniana during drought and flooding: Comparisons to the invasive Rhamnus cathartica. HortScience 39, 1278–1282 (2004).

    Google Scholar 

  • 13.

    Mascaro, J. & Schnitzer, S. A. Dominance by the introduced tree Rhamnus cathartica (common buckthorn) may limit aboveground carbon storage in Southern Wisconsin forests. For. Ecol. Manag. 261, 545–550 (2011).

    Google Scholar 

  • 14.

    Knight, K. S. Factors that influence invasion success of two woody invaders o f forest understories. (2006).

  • 15.

    Klionsky, S. M., Amatangelo, K. L. & Waller, D. M. Above- and belowground Impacts of European Buckthorn (Rhamnus cathartica) on four native forbs. Restor. Ecol. 19, 728–737 (2011).

    Google Scholar 

  • 16.

    Heneghan, L., Clay, C. & Brundage, C. Rapid decomposition of buckthorn litter may change soil nutrient levels. Ecol. Restor. 20, 108–111 (2002).

    Google Scholar 

  • 17.

    Heneghan, L., Rauschenberg, C., Fatemi, F. & Workman, M. The impact of an invasive shrub (Rhamnus cathartica L.) on some ecosystem properties in urban woodland in Chicago, Illinois. Ecol. Restor. 22, 275–280 (2004).

    Google Scholar 

  • 18.

    Godwin, H., Clowes, D. R. & Huntley, B. Studies in the Ecology of Wicken Fen: V. Development of Fen Carr. J. Ecol. 2, 197–214 (1974).

    Google Scholar 

  • 19.

    Fagan, M. & Peart, D. Impact of the invasive shrub glossy buckthorn (Rhamnus frangula L.) on juvenile recruitment by canopy trees. For. Ecol. Manag. 194, 95–107 (2004).

    Google Scholar 

  • 20.

    Frappier, B., Eckert, R. T. & Lee, T. D. Potential impacts of the invasive exotic shrub Rhamnus frangula L. (Glossy buckthorn) on forests of southern new hampshire. Bione https://doi.org/10.1656/1092-6194(2003)010[0277:PIOTIE]2.0.CO;2 (2003).

    Article  Google Scholar 

  • 21.

    Frappier, B., Eckert, R. T. & Lee, T. D. Experimental removal of the non-indigenous Shrub Rhamnus frangula (Glossy Buckthorn): Effects on native herbs and woody seedlings. Northeastern Nat. 11, 333–342. https://doi.org/10.1656/1092-6194(2004)011[0333:EROTNS]2.0.CO;2 (2004).

    Article  Google Scholar 

  • 22.

    EDDMapS. Early Detection & Distribution Mapping System: Distribution Maps. (2019). Available at: https://www.eddmaps.org/.

  • 23.

    Nuzzo, V. Element stewardship abstract for Alliaria petiolata (Alliaria officinalis), garlic mustard. Unpubl. report. Nat. Conserv. Arlington, Virginia (2000).

  • 24.

    Myers, C. V. & Anderson, R. C. Seasonal variation in photosynthetic rates influences success of an invasive plant Garlic mustard (Alliaria petiolata). Am. Midland Nat. https://doi.org/10.1674/0003-0031(2003)150[0231:SVIPRI]2.0.CO;2 (2003).

    Article  Google Scholar 

  • 25.

    Whigham, D. F. Ecology of woodland herbs in temperate deciduous forests. Annu. Rev. Ecol. Evol. Syst. 35, 583–621 (2004).

    Google Scholar 

  • 26.

    Stinson, K., Kaufman, S., Durbin, L. & Lowenstein, F. Impacts of garlic mustard invasion on a forest understory community. Northeastern Nat. https://doi.org/10.1656/1092-6194(2007)14[73:IOGMIO]2.0.CO;2 (2007).

    Article  Google Scholar 

  • 27.

    Haines, D. F., Aylward, J. A., Frey, S. D. & Stinson, K. A. Regional patterns of floristic diversity and composition in forests invaded by garlic mustard (Alliaria petiolata ). Northeast. Nat. 25, 399–417 (2018).

    Google Scholar 

  • 28.

    Huebner, C. D. Vulnerability of oak-dominated forests in West Virginia to invasive exotic plants: Temporal and spatial patterns of nine exotic species using herbarium records and land classification data. Castanea 2, 1–14 (2003).

    Google Scholar 

  • 29.

    Huebner, C. D. & Tobin, P. C. Invasibility of mature and 15-year-old deciduous forests by exotic plants. Plant Ecol. 186, 57–68 (2006).

    Google Scholar 

  • 30.

    Kurtz, CM & Hansen MH. An assessment of multiflora rose in northern U.S. forests.

  • 31.

    Dix, M. E. et al. Forest Service National Strategic Framework for Invasive Species Management. (2013).

  • 32.

    Gourley, L. Study of the ecology and spread of buckthorn (Rhamnus cathartica L.) with particular reference to the University of Wisconsin Arboretum. (1985).

  • 33.

    Moody, M. E. & Mack, R. N. Controlling the spread of plant invasions: The importance of nascent foci. J. Appl. Ecol. 25, 1009 (1988).

    Google Scholar 

  • 34.

    Simpson, A. et al. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species. Biodiversity 10, 5–13 (2009).

    Google Scholar 

  • 35.

    Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).

    Google Scholar 

  • 36.

    Midwest Invasive Plant Network. Control & Management Database. (2019). Available at: https://www.mipn.org/control/.

  • 37.

    Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).

    Google Scholar 

  • 38.

    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS ONE 13, e0193085 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  • 40.

    Barry, S. & Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 43, 413–423 (2006).

    Google Scholar 

  • 41.

    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.) 29, 773–785 (2006).

    Google Scholar 

  • 42.

    Team, C. W., Pachauri, R. K. & Meyer, L. A. IPCC, 2014: climate change 2014: synthesis report. Contribution of Working Groups I. II III to Fifth Assess. Rep. Intergov. panel Clim. Chang. IPCC, Geneva, Switz. 151, (2014).

  • 43.

    Miles, P. D. et al. Minnesota Forests 2013. Resource Bulletin NRS-104. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 134 p. 104, (2016).

  • 44.

    United States Department of Agriculture. Minnesota Agricultural Overview. (2018). Available at: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MINNESOTA.

  • 45.

    MDA: Minnesota Department of Agriculture. Minnesota Noxious Weed List. (2018). Available at: https://www.mda.state.mn.us/plants-insects/minnesota-noxious-weed-list.

  • 46.

    Reinhardt, J., Russell, M., Lazarus, W., Chandler, M. & Senay, S. Status of Invasive Plants and Management Techniques in Minnesota: Results from a 2018 Survey 1 Staff Paper Series No. 253 Department of Forest Resources. (2019).

  • 47.

    Bargeron, C. T. & Moorhead, D. J. EDDMapS—early detection and distribution mapping system for the southeast exotic pest plant council. Wildl. Weeds 10, 4–8 (2007).

    Google Scholar 

  • 48.

    Bechtold, W. A. & Patterson, P. L. Forest Inventory and Analysis national sample design and estimation procedures. USDA For. Serv. Gen. Tech. Rep. SRS-GTR-80 85 (2005).

  • 49.

    Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).

    Google Scholar 

  • 50.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Google Scholar 

  • 51.

    El-Gabbas, A. & Dormann, C. F. Wrong, but useful: Regional species distribution models may not be improved by range-wide data under biased sampling. Ecol. Evol. 8, 2196–2206 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 53.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev 4, 543–570 (2011).

    ADS  Google Scholar 

  • 54.

    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).

    ADS  Google Scholar 

  • 55.

    Maloney, E. D. et al. North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Clim. 27, 2230–2270 (2014).

    ADS  Google Scholar 

  • 56.

    Thibeault, J. M. & Seth, A. A framework for evaluating model credibility for warm-season precipitation in Northeastern North America: A case study of CMIP5 simulations and projections. J. Clim. 27, 493–510 (2014).

    ADS  Google Scholar 

  • 57.

    NRCS: Natural Resources Conservation Service; U.S. Department of Agriculture; Soil Survey Staff. Web Soil Survey. (2019).

  • 58.

    USGS: U.S. Geological Survey. USGS National Elevation Dataset (NED). (2016).

  • 59.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Google Scholar 

  • 60.

    Liaw, A. & Wiener, M. Classification and regression by random Forest. R news 2, 18–22 (2002).

    Google Scholar 

  • 61.

    R Core Team. R: A language and environment for statistical computing. (2019).

  • 62.

    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).

    Google Scholar 

  • 63.

    Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252–261 (2010).

    PubMed  Google Scholar 

  • 64.

    Evans, J. S. & Murphy, M. A. Package ‘rfUtilities’. (2018).

  • 65.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 66.

    Welk, E., Schubert, K. & Hoffmann, M. H. Present and potential distribution of invasive garlic mustard (Alliaria petiolata) in North America. Divers. Distrib. 8, 219–233 (2002).

    Google Scholar 

  • 67.

    Peterson, A. T., Papes, M. & Kluza, D. A. Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci. 51, 863–868 (2003).

    CAS  Google Scholar 

  • 68.

    Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).

    Google Scholar 

  • 69.

    Yu, W., Fan, Z. & Keith Moser, W. Incorporating A Local-Statistics-Based Spatial Weight Matrix Into A Spatial Regression Model To Map The Distribution Of Non-Native Invasive Rosa Multiflora In The Upper Midwest. Forestry & Natural-Resource Sciences Last Correction 9, (Mathematical and Computational Published, 2017).

  • 70.

    Shartell, L. M., Nagel, L. M. & Storer, A. J. Multi-criteria risk model for garlic mustard (Alliaria petiolata) in Michigan’s Upper Peninsula. Am. Midl. Nat. 165, 116–127 (2011).

    Google Scholar 

  • 71.

    Endicott, S., Drescher, M. & Brenning, A. Modelling the spread of European buckthorn in the Region of Waterloo. Biol. Invasions 19, 2993–3011 (2017).

    Google Scholar 

  • 72.

    Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 73.

    Wright, A. J. et al. Biodiversity bottleneck: Seedling establishment under changing climatic conditions at the boreal–temperate ecotone. Plant Ecol. 219, 691–704 (2018).

    Google Scholar 

  • 74.

    Fisichelli, N. et al. First-year seedlings and climate change: Species-specific responses of 15 North American tree species. Oikos 123, 1331–1340 (2014).

    Google Scholar 

  • 75.

    Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific Abundance-Range Size Relationships: An Appraisal of mechanisms. J. Anim. Ecol. 66, 579 (1997).

    Google Scholar 

  • 76.

    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    Google Scholar 

  • 77.

    Huntley, B., Berry, P. M., Cramer, W. & McDonald, A. P. Special paper: Modelling present and potential future ranges of some european higher plants using climate response surfaces. J. Biogeogr. 22, 967 (1995).

    Google Scholar 

  • 78.

    Thuiller, W., Lavorel, S. & Araujo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).

    Google Scholar 

  • 79.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

    PubMed  Google Scholar 

  • 80.

    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).

    Google Scholar 

  • 81.

    Václavík, T. & Meentemeyer, R. K. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18, 73–83 (2012).

    Google Scholar 

  • 82.

    Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E. & Thuiller, W. Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 21, 1126–1136 (2012).

    Google Scholar 

  • 83.

    Mainali, K. P. et al. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Chang. Biol. 21, 4464–4480 (2015).

    ADS  PubMed  Google Scholar 

  • 84.

    Allen, J. M. & Bradley, B. A. Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biol. Conserv. 203, 306–312 (2016).

    Google Scholar 

  • 85.

    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).

    Google Scholar 

  • 86.

    Schmidt, K. A. & Whelan, C. J. Effects of exotic lonicera and rhamnus on songbird nest predation. Conserv. Biol. 13, 1502–1506 (1999).

    Google Scholar 

  • 87.

    Stinson, K. A. et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4, e140 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 88.

    McKinney, A. M. & Goodell, K. Shading by invasive shrub reduces seed production and pollinator services in a native herb. Biol. Invasions 12, 2751–2763 (2010).

    Google Scholar 

  • 89.

    Heimpel, G. E. et al. European buckthorn and Asian soybean aphid as components of an extensive invasional meltdown in North America. Biol. Invasions 12, 2913–2931 (2010).

    Google Scholar 

  • 90.

    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).

    PubMed  Google Scholar 

  • 91.

    Wolfe, B. E., Rodgers, V. L., Stinson, K. A. & Pringle, A. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol. 96, 777–783 (2008).

    Google Scholar 

  • 92.

    Nuzzo, V. Distribution and spread of the invasive biennial Alliaria petiolata (garlic mustard) in North America. Biol. Pollut. Control impact invasive Exot. species. Proc. a Symp. held Indianapolis, Indiana, USA, 25–26 Oct. 1991. 137–145 (1993).

  • 93.

    Nuzzo, V. Invasion pattern of herb garlic mustard (Alliaria petiolata) in high quality forests. Biol. Invasions 1, 169–179 (1999).

    Google Scholar 

  • 94.

    Anderson, R. C., Dhillion, S. S. & Kelley, T. M. Aspects of the ecology of an invasive plant, garlic mustard (Alliaria petiolata), Central Illinois. Restor. Ecol. 4, 181–191 (1996).

    Google Scholar 

  • 95.

    Banasiak, S. E. & Meiners, S. J. Long term dynamics of Rosa multiflora in a successional system. Biol. Invasions 11, 215–224 (2009).

    Google Scholar 

  • 96.

    Dlugos, D. M., Collins, H., Bartelme, E. M. & Drenovsky, R. E. The non-native plant Rosa multiflora expresses shade avoidance traits under low light availability. Am. J. Bot. 102, 1323–1331 (2015).

    CAS  PubMed  Google Scholar 

  • 97.

    Moser, W. K., Fan, Z., Hansen, M. H., Crosby, M. K. & Fan, S. X. Invasibility of three major non-native invasive shrubs and associated factors in Upper Midwest US forest lands. For. Ecol. Manag. 379, 195–205 (2016).

    Google Scholar 

  • 98.

    Adalsteinsson, S. A. et al. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk. Parasit. Vectors 11, 54 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 99.

    Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).

    Google Scholar 

  • 100.

    Crall, A. W. et al. Citizen science contributes to our knowledge of invasive plant species distributions. Biol. Invasions 17, 2415–2427 (2015).

    Google Scholar 

  • 101.

    Dale, V. H. et al. Climate change and forest disturbances climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51, 723–734 (2001).

    Google Scholar 

  • 102.

    Bosworth, D., Birdsey, R., Joyce, L. & Millar, C. Climate change and the nation’s forests: challenges and opportunities. J. For. 106(4), 214–221 (2008).

    Google Scholar 

  • 103.

    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    PubMed  Google Scholar 

  • 104.

    Nagel, L. M. et al. Adaptive silviculture for climate change: A national experiment in manager-scientist partnerships to apply an adaptation framework. J. For. 115, 167–178 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Microbiota assembly, structure, and dynamics among Tsimane horticulturalists of the Bolivian Amazon

    An non-loglinear enzyme-driven law of photosynthetic scaling in two representative crop seedlings under different water conditions