in

Benthic fauna declined on a whitening Antarctic continental shelf

  • 1.

    Arntz, W. E., Brey, T. & Gallardo, V. A. Antarctic zoobenthos. Oceanogr. Mar. Biol. 32, 241–304 (1994).

    • Google Scholar
  • 2.

    Gerdes, D. et al. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biol. 12, 291–301 (1992).

    • Google Scholar
  • 3.

    Gutt, J. & Starmans, A. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol. 20, 229–247 (1998).

    • Google Scholar
  • 4.

    Gutt, J., Sirenko, B. I., Smirnov, I. S. & Arntz, W. E. How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct. Sci. 16, 11–16 (2004).

    • ADS
    • Google Scholar
  • 5.

    Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodiv. 43, 481–487 (2013).

    • Google Scholar
  • 6.

    Clarke, A. Seasonality in the Antarctic marine environment. Comp. Biochem. Physiol. 90, 461–473 (1988).

    • Google Scholar
  • 7.

    Peck, L. Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct. Sci. 17, 497–507 (2005).

    • ADS
    • Google Scholar
  • 8.

    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B. 362, 2233–2258 (2007).

    • Google Scholar
  • 9.

    Barnes, D. K. A. & Clarke, A. Antarctic marine biology. Curr. Biol. 21, R451–R457 (2011).

  • 10.

    Barnes, D. K. A. & Clarke, A. Feeding activity in Antarctic suspension feeders. Polar Biol. 15, 335–340 (1995).

    • Google Scholar
  • 11.

    Sumida, P. Y. G., Smith, C. R., Bernardino, A. F., Polito, P. S. & Vieira, D. R. Seasonal dynamics of megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital influx. R. Soc. Open. Sci. 1, 140294 (2014).

  • 12.

    Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 24, 553–564 (2001).

    • Google Scholar
  • 13.

    Gutt, J. & Piepenburg, D. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar. Ecol. Prog. Ser. 253, 77–83 (2003).

    • ADS
    • Google Scholar
  • 14.

    Peck, L. in Oceanography And Marine Biology: An Annual Review, Vol. 56 (eds Hawkins, S. J., Evans, A. J., Dale, A. C., Firth L. B. & Smith, I. P.) 105–236 (CRC Press, Boca Raton, 2018).

  • 15.

    Dayton, P. K. Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245, 1484–1486 (1989).

  • 16.

    Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Change 1, 365–368 (2011).

    • ADS
    • Google Scholar
  • 17.

    Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).

  • 18.

    Barnes, D. K. A. Antarctic sea ice losses drive gains in benthic carbon drawdown. Curr. Biol. 25, R775–R792 (2015).

    • Google Scholar
  • 19.

    Sahade, R. et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 1, e1500050 (2015).

  • 20.

    Barnes, D. K. A., Fleming, A., Sands, C. J., Quartino, M. L. & Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A. 376, 2017176 (2018).

    • Google Scholar
  • 21.

    Peck, L. S., Barnes, D. K. A., Cook, A. J., Fleming, A. H. & Clarke, A. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob. Change Biol. 16, 2614–2623 (2010).

    • ADS
    • Google Scholar
  • 22.

    Maksym, T. Arctic and Antarctic Sea ice change: contrasts, commonalities, and causes. Annu. Rev. Mar. Sci. 11, 187–213 (2019).

    • ADS
    • Google Scholar
  • 23.

    Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl Acad. Sci. USA 116, 14414–14423 (2019).

  • 24.

    Ludescher, J., Yuan, N. & Bunde, A. Detecting the statistical significance of the trends in the Antarctic sea ice extent: an indication for a turning point. Clim. Dyn. 53, 237–344. (2019).

    • Google Scholar
  • 25.

    Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecol. Appl. 29, e01823 (2019).

  • 26.

    Dayton, P. K. et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anaxycalyx joubini. Plos ONE 8, e56939 (2013).

  • 27.

    Dayton, P. K. et al. Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. J. Exp. Mar. Biol. Ecol. 482, 38–55 (2016).

    • Google Scholar
  • 28.

    Turner, J., Hosking, J. S., Marsahll, G. J., Phillips, T. & Bracegirdle, T. J. Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Clim. Dyn. 46, 2391–2402 (2016).

    • Google Scholar
  • 29.

    Comiso, J. C. et al. Positive trend in the Antarctic sea-ice cover and associated changes in surface tempreature. J. Clim. 30, 2251–2267 (2017).

    • ADS
    • Google Scholar
  • 30.

    Vernet, M. et al. The Weddell Gyre, Southern Ocean: Present knowledge and future challenges. Rev. Geophys. https://doi.org/10.1029/2018RG000604 (2019).

  • 31.

    Ranckow, T. et al. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates. J. Geophys. Res. Oceans 122, 3170–3190 (2017).

    • ADS
    • Google Scholar
  • 32.

    Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Oceans 120, 5545–5565 (2015).

    • ADS
    • Google Scholar
  • 33.

    Smith, C. R., Minks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res. Pt. II 53, 875–894 (2006).

    • ADS
    • Google Scholar
  • 34.

    Gutt, J. & Starmans, A. Quantification of iceberg impact and benthic recolonization patterns in the Weddell Sea (Antarctica). Polar Biol. 24, 615–619 (2001).

    • Google Scholar
  • 35.

    Liu, J., Curry, J. A. & Martinson, D. G. Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett. 31, L02205 (2004).

    • ADS
    • Google Scholar
  • 36.

    Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change. https://doi.org/10.1038/NCLIMATE2235 (2014).

  • 37.

    Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2016).

    • ADS
    • Google Scholar
  • 38.

    Doddridge, E. W. & Marshall, J. Modulation of the seasonal cycle of Antarctic sea ice extent related to the southern Annular Mode. Geophys. Res. Lett. 44, 7961–9786 (2017).

    • Google Scholar
  • 39.

    Brey, T. & Clarke, A. Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarct. Sci. 5, 253–266 (1993).

    • ADS
    • Google Scholar
  • 40.

    Pearse, J. S., McClintock, J. B. & Bosch, I. Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. Am. Zool. 31, 65–80 (1991).

    • Google Scholar
  • 41.

    Peck, L. Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol. 25, 31–40 (2002).

    • Google Scholar
  • 42.

    Barnes, D. K. A. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob. Change Biol. 23, 2649–2659 (2016).

    • ADS
    • Google Scholar
  • 43.

    Pineda-Metz, S. E. A., Gerdes, D. & Isla, E. Benthic communities of the Filchner Region (Weddell Sea). Mar. Ecol. Prog. Ser. 628, 37–54 (2019).

  • 44.

    Timmermann, R. & Hellmer, H. H. Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dynam. 6363, 1011–1026 (2013).

    • ADS
    • Google Scholar
  • 45.

    Sandersfeld, T., Davison, W., Lamare, M. D., Rainer, K. & Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 218, 2373–2381 (2015).

    • PubMed
    • Google Scholar
  • 46.

    Isla, E. & Gerdes, D. Ongoing ocean warming threatens the rich and diverse microbenthic communities of the Antarctic continental shelf. Prog. Oceanogr. 178, 102180 (2019).

    • Google Scholar
  • 47.

    Hellmer, H. H., Kauker, F., Timmermann, R. & Hattermann, T. The fate of the southern Weddell Sea continental shelf in a warming climate. J. Clim. 30, 4337–4350 (2017).

    • ADS
    • Google Scholar
  • 48.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 588, 233–241 (2018).

    • ADS
    • Google Scholar
  • 49.

    Hellmer, H. H., Kauker, F., Timmermann, R., Determan, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

  • 50.

    Gerdes, D., Hilbig, B. & Montiel, A. Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar. Biol. 26, 295–301 (2003).

    • Google Scholar
  • 51.

    Isla, E. et al. Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Mar. Geol. 259, 59–72 (2009).

  • 52.

    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI). Polar Research and Supply Vessel POLARSTERN operated by the Alfred Wegener Institute. J. Large-scale Res. Facil. 3, A119 (2017).

  • 53.

    Gerdes, D., Isla, E., Knust, R., Mintenbeck, K. & Rossi, S. Response of Antarctic benthic communities to disturbance: first results from the artificial Benthic Disturbance Experiment on the eastern Weddell Sea Shelf, Antarctica. Polar Biol. 31, 1469–1480 (2008).

    • Google Scholar
  • 54.

    Gerdes, D. Antarctic trials of the multi-box corer, a new device for benthos sampling. Polar Rec. 26, 35–38 (1990).

    • Google Scholar
  • 55.

    Pineda-Metz, S. E. A. & Gerdes, D. Seabed images versus corer sampling: a comparison of two quantitative approaches for the analysis of marine benthic communities in the southern Weddell Sea (Southern Ocean). Polar Biol. 41, 515–526 (2018).

    • Google Scholar
  • 56.

    Gili, J. M., Coma, R., Orejas, C., López-González, J. & Zabala, M. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 24, 473–485 (2001).

    • Google Scholar
  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 58.

    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. K. Sea Ice Index v3 (National Snow and Ice Data Center, 2017). 

  • 59.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Chlorophyll Data (NASA OB.DAAC, Greenbelt, 2018).

  • 60.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Particulate Organic Carbon Data (NASA OB.DAAC, Greenbelt, 2018).

  • 61.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data (NASA OB.DAAC, Greenbelt, 2018).

  • 62.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua Particulate Organic Carbon Data (NASA OB.DAAC, Greenbelt, 2018).

  • 63.

    National Oceanic & Atmospheric Administration (NOAA). Solar Geometry Calculator, https://www.esrl.noaa.gov/gmd/grad/antuv/SolarCalc.jsp?mu=on&sza=on&el=on&az=on (2018).

  • 64.

    Tournadre, J., Bouhier, N., Girard-Ardhuin, F. & Rémy, F. Antarctic icebergs distributions 1992-2014. J. Geophys. Res. Oceans 121, 327–349 (2016).

    • ADS
    • Google Scholar
  • 65.

    Tournadre, J., Accensi, M. & Girard-Ardhuin F. The ALTIBERG iceberg data base version-2.1 (Ifremer, 2019).

  • 66.

    Marshall, G. & National Center for Atmospheric Research Staff. The Climate Data Guide: Marshall Southern Annular Mode (SAM) Index (Station-based), https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based (2018).

  • 67.

    Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997–2006. J. Geophys. Res. 113, C08004 (2008).

    • ADS
    • Google Scholar
  • 68.

    Arndt, J. E. et al. The international Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – a new bathymetric compilation covering circum-Antarctic water. Geophys. Res. Lett. 40, 3111–3117 (2013).

    • ADS
    • Google Scholar
  • 69.

    Hasley, L. G. The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? Biol. Lett. 15, 2019–0174 (2019).

    • Google Scholar

  • Source: Ecology - nature.com

    Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model

    3 Questions: Anne McCants on climate change in history