
Gray, S. M. & Banerjee, N. Mechanisms of arthropod transmission of plant and animal viruses. MMBR. 63, 128–148 (1999).
Agarwal, A., Parida, M. & Dash, P. K. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev. Med. Virol. 27, e1941 (2017).
Stumpf, C. F. & Kennedy, G. G. Effects of tomato spotted wilt virus (TSWV) isolates, host plants, and temperature on survival, size, and development time of Frankliniella fusca. Entomol. Exp. Appl. 114, 215–225 (2005).
Stumpf, C. F. & Kennedy, G. G. Effects of tomato spotted wilt virus isolates, host plants, and temperature on survival, size, and development time of Frankliniella occidentalis. Entomol. Exp. Appl. 123, 139–147 (2007).
Hogenhout, S. A., Ammar, E. -D., Whitfield, A. E., & Redinbaugh, M. G. Insect Vector Interactions with Persistently Transmitted Viruses. Ann. Rev. Entomol. 46, 327–359 (2008).
Ammar, E.-D., Gingery, R. E. & Madden, L. Transmission efficiency of three isolates of maize stripe tenuivirus in relation to virus titre in the planthopper vector. Plant Pathol. 44, 239–243 (1995).
Ammar, E.-D. Effect of European wheat striate mosaic, acquired transovarially, on the biology of its planthopper vector Javesella pellucida. Ann. Appl. Biol. 79, 203–213 (1975).
Gill, C. C. Cyclical transmissibility of barley yellow dwarf virus from oats with increasing age of infection. Phytopathol. 59, 23–28 (1969).
Gray, S. M., Power, A. G., Smith, D. M., Seaman, A. J. & Altman, N. S. Aphid transmission of barley yellow dwarf virus: acquisition access periods and virus concentration requirements. Phytopathol. 81, 539–545 (1991).
Pereira, A.-M., Lister, R. M., Barbara, P. J. & Shaner, G. E. Relative transmissibility of barley yellow dwarf virus from sources with differing virus contents. Phytopathol. 79, 1353–1358 (1989).
Lett, J.-M. et al. Spatial and temporal distribution of geminiviruses in leafhoppers of the genus Cicadulina monitored by conventional and quantitative polymerase chain reaction. Phytopathol. 92, 65–74 (2002).
Whitfield, A. E., Falk, B. W. & Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virol. 479, 278–289 (2015).
Inoue, T., Sakurai, T., Murai, T. & Maeda, T. Specificity of accumulation and transmission of tomato spotted wilt virus (TSWV) in two genera, Frankliniella and Thrips (Thysanoptera: Thripidae). Bull. of Entomol. Res. 94, 501–507 (2004).
Nagata, T., Almeida, A. C. L., Resende, R. O. & DeÁvila, A. C. The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathol. 53, 136–140 (2004).
Okazaki, O. et al. The effect of virus titre on acquisition efficiency of Tomato spotted wilt virus by Frankliniella occidentalis and the effect of temperature on detectable period of the virus in dead bodies. Australasian. Plant Pathol. 40, 120–125 (2011).
Rotenberg, D. et al. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission. Phytopathol. 99, 404–10 (2009).
Jacobson, A. L. & Kennedy, G. G. Specific insect-virus interactions are responsible for variation in competency of different Thrips tabaci isolines to transmit different tomato spotted wilt virus isolates. PLoS ONE 8, e54567 (2013).
Morgan, A. D., Gandon, S. & Buckling, A. The effect of migration on local adaptation in a coevolving host-parasite system. Nature. 437, 253–256 (2005).
Boonham, N. et al. The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (Taqman). J. Virol. Meth. 101, 37–48 (2002).
Gandon, S. & Michalakis, Y. Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J. Evol. Biol. 15, 451–462 (2002).
Jacobson, A. L., Booth, W., Vargo, E. L. & Kennedy, G. G. Thrips tabaci population genetic structure and polyploidy in relation to competency as a vector of tomato spotted wilt virus. PLoS ONE 8, e54484 (2013).
Cabrera-La Rosa, J. C. & Kennedy, G. G. Thrips tabaci and tomato spotted wilt virus: inheritance of vector competence. Entomol. Expt. et Appl. 124, 161–166 (2007).
Halaweh, N. & Poehling, H. M. Inheritance of vector competence by the thrips Ceratothripoides claratris (Shumsher) (Thysanoptera: Thripidae). J. Appl. Entomol. 133, 386–393 (2009).
Ogada, P. A., Debener, T. & Poehling, H. M. Inheritance genetics of the trait vector competence in Frankliniella occidentalis (western flower thrips) in the transmission of tomato spotted wilt virus. Ecol. & Evol. 6, 7911–7920 (2016).
Rotenberg, D., Jacobson, A. L., Schneweis, D. J. & Whitfield, A. E. Thrips transmission of tospoviruses. Curr. Opin. Virol. 15, 80–89 (2015).
Oliver, J. E. & Whitfield, A. E. The genus Tospovirus: Emerging Bunyaviruses that threaten food security. Annu. Rev. Virol. 3, 101–24 (2016).
Ullman, D. E., German, T., Sherwood, J. L., Wescot, D. M. & Cantone, F. A. Immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathol. 83, 456–463 (1993).
Ullman, D. E., Wescot, D. M., Chenaut, K. D., Sherwood, J. L. & German, T. Compartmentalization, intracellular transport, and autophagy of tomato spotted wilt tospovirus proteins in infected thrips cells. Phytopathol. 85, 644–654 (1995).
Sin, S. H., McNulty, B. C., Kennedy, G. G. & Moyer, J. W. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. PNAS. 102, 5168–5173 (2005).
Margaria, P., Bosco, L. & Vallino, M. The NSs protein of Tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J. Virol. 88, 5788–5802 (2014).
Montero-Astúa, M. et al. Disruption of vector transmission by a plant-expressed viral glycoprotein. MPMI. 27(3), 296–304 (2014).
Montero-Astúa, M., Ullman, D. E. & Whitfield, A. E. Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virol. 493, 39–51 (2016).
Nagata., T., Inoue-Nagata, A. K., Smid, H. M., Goldbach, R. & Peters, D. Tissue tropism related to vector competence of Frankliniella occidentalis for tomato spotted wilt tospovirus. J. Gen. Virol. 80, 507–515 (1999).
Kritzman, A. et al. The route of tomato spotted wilt virus inside the thrips body in relation to transmission efficiency. Archives Virol. 147, 2143–2156 (2002).
Whitfield, A. E. et al. A soluble form of the tomato spotted wilt virus (TSWV) glycoprotein GN (GN -S) inhibits transmission of TSWV by Frankliniella occidentalis. Phyopathol. 98, 45–50 (2008).
Bandla, M. D., Campbell, L. R., Ullman, D. E. & Sherwood, J. L. Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathol 88(2), 98–104 (1998).
Kikkert, M. et al. Binding of tomato Spotted wilt virus to a 94-kDa thrips protein. Phytopathol. 88, 63–69 (1998).
Thomas, R. E., Wu, W. K., Verleye, D. & Rai, K. S. Midgut basal lamina thickness and dengue-1 virus dissemination rates in laboratory strains of Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 30, 326–331 (1993).
Ullman, D. E., Cho, J. J., Mau, R. F. L., Westcot, D. M. & Custer, D. M. A midgut barrier to Tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathol. 82, 1333–1342 (1992).
de Assis Filho, F. M., Stavisky, J., Reitz, S. R., Deom, C. M. & Sherwood, J. L. Midgut infection by tomato spotted wilt virus and vector incompetence of Frankliniella tritici. J. Appl. Entomol. 129, 548–550 (2005).
Gildow, F. E. & Grey, S. M. The aphid salivary-gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteoviruses. Phytopathol. 83, 1293–1302 (1993).
Peiffer, M. L., Gildow, F. E. & Gray, S. M. Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. J. Gen. Virol. 78, 595–503 (1997).
Gray, S. & Gildow, F. E. Luteovirus-aphid interactions. Annu. Rev. Phytapathol. 41, 539–566 (2003).
Wei, J. et al. Specific cells in the primary salivary glands of the whitefly Bemisia tabaci control retention and transmission of Begomoviruses. J. Virol. 88, 13460–13468 (2014).
Medeiros, R. B., Resende, R. D. O. & Ávila, C. D. The plant virus tomato spotted wilt tospovirus activates the immune system of its main vector, Frankliniella occidentalis. J. Virol. 78, 4976–4982 (2004).
Schneweis, D. J., Whitfield, A. E. & Rotenberg, D. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virol. 500, 226–237 (2017).
Shrestha, A. et al. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). J. Gen. Virol. 98, 2156–2170 (2017).
Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. PNAS. 108, 9350–9355 (2011).
Kindt, F., Joosten, N. N., Peters, D. & Tjallingii, W. F. Characterization of the feeding behavior of western flower thrips in terms of electrical penetration graph (EPG) waveforms. J. Insect Physiol. 49, 183–191 (2003).
Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191 (2018).
Mason, G., Roggero, P. & Tavella, L. Detection of tomato spotted wilt virus in its vector Frankliniella occidentalis by reverse transcription-polymerase chain reaction. J. Virol. Meth. 109, 69–73 (2003).
Yang, C. C. et al. Validation of reference genes for gene expression studies in nonviruliferous and viruliferous Frankliniella occidentalis (Thysanoptera: Thripidae). PeerJ PrePrints. 2, e662v1 (2014).
Zheng., Y. T., Li, H. B., Lu, M. X. & Du, Y. Z. Evaluation and validation of reference genes for qRT-PCR normalization in Frankliniella occidentalis (Thysanoptera: Thripidae). PLoS ONE. 9, e111369 (2014).
Roberts, C. A., Dietzgen, R. G., Heelan, L. A. & Maclean, D. J. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. J. Virol. Meth. 88, 1–8 (2000).
Mortimer-Jones, S. M., Jones, M. G. K., Jones, R. A. C., Thomson, G. & Dwyer, G. I. A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. J. Virol. Meth. 161, 289–296 (2009).
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 3, 1101–1108 (2008).
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
Source: Ecology - nature.com