in

Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome

  • 1.

    Barnosky, A. D. et al. Has the earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  • 2.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Advance Unedited Version) (IPBES Secretariat, 2019).

  • 3.

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    • Article
    • Google Scholar
  • 4.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

  • 5.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

  • 6.

    Vellend, M. et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98, 583–590 (2017).

  • 7.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  • 8.

    Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).

  • 9.

    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).

    • Article
    • Google Scholar
  • 10.

    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

  • 11.

    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

  • 12.

    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    • Article
    • Google Scholar
  • 13.

    Gaston, K. J. The multiple forms of the interspecific abundance–distribution relationship. Oikos 76, 211–220 (1996).

    • Article
    • Google Scholar
  • 14.

    Gaston, K. J. et al. Abundance–occupancy relationships. J. Appl. Ecol. 37, 39–59 (2000).

    • Article
    • Google Scholar
  • 15.

    Schoener, T. W. & Spiller, D. A. High population persistence in a system with high turnover. Nature 330, 474–477 (1987).

    • Article
    • Google Scholar
  • 16.

    Kambach, S. et al. Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography (Cop.) 42, 467–477 (2019).

    • Article
    • Google Scholar
  • 17.

    Berendse, F. & Aerts, R. Nitrogen-use-efficiency: a biologically meaningful definition? Funct. Ecol. 1, 293–296 (1987).

    • Google Scholar
  • 18.

    Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

  • 19.

    Aber, J. D. et al. Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience 53, 375–389 (2003).

    • Article
    • Google Scholar
  • 20.

    Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006).

  • 21.

    Aber, J. et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48, 921–934 (1998).

    • Article
    • Google Scholar
  • 22.

    Tian, D., Wang, H., Sun, J. & Niu, S. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 11, 24012 (2016).

  • 23.

    Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

  • 24.

    Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).

  • 25.

    Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).

  • 26.

    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

  • 27.

    Clark, C. M. et al. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat. Plants 5, 697–705 (2019).

  • 28.

    Ortmann-Ajkai, A. et al. Twenty-years’ changes of wetland vegetation: effects of floodplain-level threats. Wetlands 38, 591–604 (2018).

    • Article
    • Google Scholar
  • 29.

    Hernández, D. L. et al. Nitrogen pollution is linked to US listed species declines. BioScience 66, 213–222 (2016).

    • Article
    • Google Scholar
  • 30.

    Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016).

  • 31.

    Sonkoly, J. et al. Do large-seeded herbs have a small range size? The seed mass–distribution range trade-off hypothesis. Ecol. Evol. 7, 11204–11212 (2017).

  • 32.

    Bartelheimer, M. & Poschlod, P. Functional characterizations of Ellenberg indicator values—a review on ecophysiological determinants. Funct. Ecol. 30, 506–516 (2016).

    • Article
    • Google Scholar
  • 33.

    Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    • Article
    • Google Scholar
  • 34.

    Grotkopp, E., Rejmánek, M. & Rost, T. L. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. Am. Nat. 159, 396–419 (2002).

  • 35.

    Fenner, M. & Thompson, K. The Ecology of Seeds (Cambridge Univ. Press, 2005).

  • 36.

    Van der Veken, S., Bellemare, J., Verheyen, K. & Hermy, M. Life-history traits are correlated with geographical distribution patterns of western European forest herb species. J. Biogeogr. 34, 1723–1735 (2007).

    • Article
    • Google Scholar
  • 37.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

  • 38.

    Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982).

    • Article
    • Google Scholar
  • 39.

    Wright, D. H. Correlations between incidence and abundance are expected by chance. J. Biogeogr. 18, 463–466 (1991).

    • Article
    • Google Scholar
  • 40.

    Mason, H. L. The edaphic factor in narrow endemism. I. The nature of environmental influences. Madroño 8, 209–226 (1946).

    • Google Scholar
  • 41.

    Sandel, B. S. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

  • 42.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).

  • 43.

    Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005).

  • 44.

    Rabinowitz, D., Cairns, S. & Dillon, T. in Conservation Biology: The Science of Scarcity and Diversity (ed. Soulé, M. E.) 182–204 (Sinauer Associates, 1986).

  • 45.

    Köckemann, B., Buschmann, H. & Leuschner, C. The relationships between abundance, range size and niche breadth in Central European tree species. J. Biogeogr. 36, 854–864 (2009).

    • Article
    • Google Scholar
  • 46.

    Thompson, K., Hodgson, J. G. & Gaston, K. J. Abundance–range size relationships in the herbaceous flora of central England. J. Ecol. 86, 439–448 (1998).

    • Article
    • Google Scholar
  • 47.

    Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365 (2012).

    • Article
    • Google Scholar
  • 48.

    Dirnböck, T. et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Change Biol. 20, 429–440 (2014).

    • Article
    • Google Scholar
  • 49.

    Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Change Biol. 21, 3726–3737 (2015).

    • Article
    • Google Scholar
  • 50.

    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

  • 51.

    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

  • 52.

    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

  • 53.

    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

  • 54.

    Amann, M. et al. Progress towards the Achievement of the EU’s Air Quality and Emissions Objectives (IIASA, 2018).

  • 55.

    Storkey, J. et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528, 401–404 (2015).

  • 56.

    Isbell, F., Tilman, D., Polasky, S., Binder, S. & Hawthorne, P. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol. Lett. 16, 454–460 (2013).

  • 57.

    Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. BioScience 67, 73–83 (2016).

  • 58.

    Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).

  • 59.

    Beck, J., Takano, H., Ballesteros-Mejia, L., Kitching, I. J. & McCain, C. M. Field sampling is biased against small-ranged species of high conservation value: a case study on the sphingid moths of East Africa. Biodivers. Conserv. 27, 3533–3544 (2018).

    • Article
    • Google Scholar
  • 60.

    Verheyen, K. et al. Observer and relocation errors matter in resurveys of historical vegetation plots. J. Veg. Sci. 29, 812–823 (2018).

    • Article
    • Google Scholar
  • 61.

    Kopecký, M. & Macek, M. Vegetation resurvey is robust to plot location uncertainty. Divers. Distrib. 21, 322–330 (2015).

  • 62.

    GBIF Occurrence Download (GBIF, accessed 18 January 2019); https://doi.org/10.15468/dl.l1r0yg

  • 63.

    Chamberlain, S. scrubr: clean biological occurrence records (R package v.0.1, 2016).

  • 64.

    Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).

    • Article
    • Google Scholar
  • 65.

    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).

    • Article
    • Google Scholar
  • 66.

    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

  • 67.

    Hultén, E., et al. Atlas of North European Vascular Plants North of the Tropic of Cancer (Koeltz Scientific, 1986).

  • 68.

    Meusel, H., Jäger, E. J. & Weinert, E. Vergleichende Chorologie der Zentraleuropaischen Flora (Gustav Fischer, 1965).

  • 69.

    Berg, C., Welk, E. & Jäger, E. J. Revising Ellenberg’s indicator values for continentality based on global vascular plant species distribution. Appl. Veg. Sci. 20, 482–493 (2017).

    • Article
    • Google Scholar
  • 70.

    Stevens, C. J. et al. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ. Pollut. 159, 665–676 (2011).

  • 71.

    van den Berg, L. J. L. et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 208, 890–897 (2016).

  • 72.

    Dorland, E. et al. Differential effects of oxidised and reduced nitrogen on vegetation and soil chemistry of species-rich acidic grasslands. Water, Air, Soil Pollut. 224, 1664 (2013).

  • 73.

    Gauss, M. et al. EMEP MSC-W Model Performance for Acidifying and Eutrophying Components, Photo-oxidants and Particulate Matter in 2017 (Supplementary Material to EMEP Status Report, 2019).

  • 74.

    Asman, W. A. H. Factors influencing local dry deposition of gases with special reference to ammonia. Atmos. Environ. 32, 415–421 (1998).

  • 75.

    Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Goltze, 2001).

  • 76.

    Diekmann, M. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4, 493–506 (2003).

    • Article
    • Google Scholar
  • 77.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall, CRC, 2018).

  • 78.

    Peterson, R. A. bestNormalize: normalizing transformation functions (R package v.1.2.0, 2018).

  • 79.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    • Article
    • Google Scholar
  • 80.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

  • 81.

    Pearl, J. Causality 2nd edn (Cambridge Univ. Press, 2009).


  • Source: Ecology - nature.com

    Evaluating the global energy system

    Energy economics class inspires students to pursue clean energy careers