in

Target-site EPSPS Pro-106-Ser mutation in Conyza canadensis biotypes with extreme resistance to glyphosate in Ohio and Iowa, USA

  • 1.

    Heap, I. The International Survey of Herbicide Resistant Weeds. Online. www.weedscience.com Accessed 1 March 2019. (2019).

  • 2.

    Duke, S. O. & Powles, S. B. Glyphosate: a once-in-a-century herbicide. Pest Management Science. 64, 319–325 (2008).

  • 3.

    Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences. Europe. 28, 1–15 (2016).

    • CAS
    • Google Scholar
  • 4.

    Sammons, R. D. & Gaines, T. A. Glyphosate resistance: state of knowledge. Pest Management Science. 70, 1367–1377 (2014).

  • 5.

    Heap, I., & Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Management Science. 74; https://doi.org/10.1002/ps.4760 (2017).

  • 6.

    Baerson, S. R. et al. Glyphosate-resistant Goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiology. 129, 1265–1275 (2002).

  • 7.

    Alcántara-de la Cruz, R. et al. Target and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks (Bidens pilosa L.) populations from Mexico. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.01492 (2016).

  • 8.

    Yu, Q. et al. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiology. 167, 1440–1447 (2015).

  • 9.

    Han, H., Vila-Aiub, M. M., Jalaludin, A., Yu, Q. & Powles, S. B. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant, Cell, &. Environment. 40, 3031–3042 (2017).

    • CAS
    • Google Scholar
  • 10.

    Chen, J. et al. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta. 242, 859–868 (2015).

  • 11.

    Chen, J. et al. Characterization of Eleusine indica with gene mutation or amplication in EPSPS to glyphosate. Pesticide Biochemistry and Physiology. 143, 201–206 (2017).

  • 12.

    Perotti, V. E. et al. A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate-resistant Amaranthus hybridus population from Argentina. Pest Management Sciences. https://doi.org/10.1002/ps.5303 (2018).

  • 13.

    VanGessel, M. J. Glyphosate-resistant horseweed from Delaware. Weed Science. 49, 703–705 (2001).

  • 14.

    Zelaya, I. A., Owen, M. D. K. & VanGessel, M. J. Inheritance of evolved glyphosate resistance in horseweed (Conyza canadensis (I.) Cronq.). Theoretical Applied Genetics. 100, 58–70 (2004).

  • 15.

    Zelaya, I. A., Owen, M. D. K. & VanGessel, M. J. Transfer of glyphosate resistance: evidence of hybridization in Conyza (Asteraceae). American Journal of Botany. 94, 660–673 (2007).

  • 16.

    Feng, P. C. et al. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Science. 52, 498–505 (2004).

  • 17.

    Ge, X., d’Avignon, D. A., Ackerman, J. J. & Sammons, R. D. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science. 66, 345–348 (2010).

  • 18.

    Koger, C. H. & Reddy, K. N. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Science. 53, 84–89 (2005).

  • 19.

    Dinelli, G. et al. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pesticide Biochemistry and Physiology. 86, 30–41 (2006).

  • 20.

    Moretti, M. L. & Hanson, B. D. Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research. 57, 25–34 (2017).

  • 21.

    Hanson, B. D., Shrestha, A. & Shaner, D. L. Distribution of glyphosate-resistant horseweed (Conyza canadensis) and relationship to cropping systems in the Central Valley of California. Weed Science. 57, 48–53 (2009).

  • 22.

    González-Torralva, F., Rojano-Delgado, A. M., Luque de Castro, M. D., Mülleder, N. & De Prado, R. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology. 169, 1673–1679 (2012).

  • 23.

    Page, E. R. et al. Target and non-target site mechanisms confer resistance to glyphosate in Canadian accessions of Conyza canadensis. Weed Science. 66, 234–245 (2018).

    • Article
    • Google Scholar
  • 24.

    Peng, Y. et al. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for candidate non-target herbicide resistance genes. Pest Management Science. 66, 1053–1062 (2010).

  • 25.

    Peng, Y. et al. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiology. 166, 1241–1254 (2014).

  • 26.

    Yuan, J. S. et al. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target site glyphosate resistance. Weed Science. 58, 109–117 (2010).

  • 27.

    d’Avignon, D. A. & Ge, X. In vivo NMR investigations of glyphosate influences on plant metabolism. Journal of Magnetic Resonance. 292, 59–72 (2018).

  • 28.

    Tani, E., Chachalis, D. & Travlos, I. S. A glyphosate resistance mechanism in Conyza canadensis involves synchronization of EPSPS of ABC-transporter genes. Plant Molecular Biology Reporter. 33, 1721–1730 (2015).

  • 29.

    Ge, X. et al. Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31PNMR. Pest Management Science. 67, 1215–1221 (2011).

  • 30.

    Nol, N., Tsikou, D., Eid, M., Liverieratos, I. C. & Giannopolitis, C. N. Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Research. 52, 233–241 (2012).

  • 31.

    Mei, Y., Xu, Y., Wang, S., Qiu, L. & Zheng, M. Investigations of glyphosate resistance levels and target-site based resistance (TSR) mechanisms in Conyza canadensis (L.) from apple orchards around areas of Bohai seas and Loess Plateau in China. Pesticide Biochemistry and Physiology. 146, 7–12 (2018).

  • 32.

    Beres, Z. T. et al. High levels of glyphosate resistance in Conyza canadensis from agricultural and non-agricultural sites in Ohio and Iowa. Scientific Reports. 8, 10483, https://doi.org/10.1038/s41598-018-28163-w (2018).

  • 33.

    Nandula, V. K., Ray, J. D., Ribeiro, D. N., Pan, Z. & Reddy, K. N. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Science. 61, 374–383 (2013).

  • 34.

    Bostamam, Y., Malone, J. M., Dolman, F. C., Boutsalis, P. & Preston, C. Rigid ryegrass (Lolium rigidum) populations containing a target site mutation in EPSPS and reduced glyphosate translocation are more resistant to glyphosate. Weed Science. 60, 474–479 (2012).

  • 35.

    Kaundun, S. S. et al. A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population. Journal Agricultural. Food Chemistry. 59, 3227–3233 (2011).

  • 36.

    Dauer, J. T., Mortensen, D. A. & VanGessel, M. J. Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. Journal of Applied Ecology. 44, 105–114 (2007).

    • Article
    • Google Scholar
  • 37.

    Dauer, J. T., Luschei, E. C. & Mortensen, D. A. Effects of landscape composition on spread of an herbicide-resistant weed. Landscape Ecology. 24, 735–747 (2009).

    • Article
    • Google Scholar
  • 38.

    Okada, M. et al. Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evolutionary Applications. 6, 761–777 (2013).

  • 39.

    González-Torralva, F., Gil-Humanes, J., Barro, F., Brants, I. & De Prado, R. Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain. Plant Physiology and Biochemistry. 58, 16–22 (2012).

  • 40.

    Weaver, S. E. The biology of Canadian weeds. Canadian Journal of Plant Science. 81, 867–875 (2001).

    • Article
    • Google Scholar
  • 41.

    Regehr, D. L. & Bazzazz, F. A. The population dynamics of Erigeron canadensis, a successional winter annual. Journal of Ecology. 6, 923–933 (1979).

    • Article
    • Google Scholar
  • 42.

    Tozzi, E., Lyons, E. M. & Van Acker, R. C. The effect of simulated winter warming spells on Canada fleabane [Conyza canadensis (L.) Cronq. var. canadensis] seeds and plants. Canadian Journal of Plant Science. 94, 963–969 (2014).

    • Article
    • Google Scholar
  • 43.

    Shields, D. L., Dauer, J. T., VanGessel, M. J. & Neumann, G. Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Science. 54, 1063–1067 (2006).

  • 44.

    Davis, V. M., Kruger, G. R., Hallett, S. G., Tranel, P. J. & Johnson, W. G. Heritability of glyphosate resistance in Indiana horseweed (Conyza canadensis) populations. Weed Science. 58, 30–38 (2010).

  • 45.

    Davis, V. M., Gibson, K. D., Bauman, T. T., Weller, S. C. & Johnson, W. G. Influence of weed management practices and crop rotation on glyphosate-resistant horseweed (Conyza canadensis) population dynamics and crop yield –years III and IV. Weed Science. 57, 417–426 (2009).

  • 46.

    Dominguez-Valenzuela, J. A. et al. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico. Plant Physiology and Biochemistry. 115, 212–218 (2017).

  • 47.

    Bell, M. S., Hager, A. G. & Tranel, P. J. Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Science. 61, 460–468 (2013).

  • 48.

    Murphy, B. P., Larran, A. S., Ackley, B., Loux, M. M. & Tranel, P. J. Survey of glyphosate-, atrazine- and lactofen-resistance mechanisms in Ohio waterhemp (Amaranthus tuberculatus) populations. Weed Science. 67, 296–302 (2019).

    • Article
    • Google Scholar
  • 49.

    Ngo, T. D., Krishnan, M., Boutsalis, P., Gill, G. & Preston, C. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia. Pest Management Science. 74, 1094–1100 (2016).

  • 50.

    de Carvalho, L. B. et al. Pool of resistance mechanisms to glyphosate in Digitaria insularis. Journal of Agricultural and Food Chemistry. 60, 615–622 (2012).

  • 51.

    Alarcón-Reverte, R., Urzüa, J. & Fischer, A. J. Resistance to glyphosate in junglerice (Echinochloa colona) from California. Weed Science. 61, 48–54 (2012).

  • 52.

    Alarcón-Reverte, R. et al. Concerted action of target-site mutations and high EPSPS activity in glyphosate-resistant junglerice (Echinochloa colona) from California. Pest Management Science. https://doi.org/10.1002/ps.3878 (2014).

  • 53.

    Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T. & Ismail, B. S. Gene polymorphisms in glyphosate-resistant and –susceptible biotypes of Eleusine indica from Malaysia. Weed Research. 43, 108–115 (2003).

  • 54.

    Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T. & Ismail, B. S. Glyphosate resistance in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific alleles. Australian Journal of Agricultural Research. 55, 407–414 (2004).

  • 55.

    Kaundun, S. S. et al. Importance of the P106S target-site mutation in conferring resistance to glyphosate in goosegrass (Eleusine indica) population from the Philippines. Weed Science. 56, 16–22 (2008).

  • 56.

    Gherekhloo, J. et al. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Scientific Reports. https://doi.org/10.1038/s41598-017-06772-1 (2017)

  • 57.

    Takano, H. K. et al. Proline-106-EPSPS mutation imparting glyphosate resistance in goosegrass (Eleusine indica) emerges in South America. Weed Science. 67, 48–56 (2018).

    • Article
    • Google Scholar
  • 58.

    Alcántara-de la Cruz, R. et al. First resistance mechanisms characterization in glyphosate-resistant Leptochloa virgata. Frontiers in Plant Science. 7, 1742, https://doi.org/10.3389/fpls.2016.01742 (2016).

  • 59.

    Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J. & Mallory-Smith, C. A. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta. 226, 395–404 (2007).

  • 60.

    Jasieniuk, M. et al. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Science. 56, 496–502 (2008).

  • 61.

    Wakelin, A. M. & Preston, C. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Research. 46, 432–440 (2006).

  • 62.

    Yu, Q., Cairns, A. & Powles, S. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta. 225, 499–513 (2007).

  • 63.

    Simarmata, M. & Penner, D. The basis for glyphosate resistance in rigid ryegrass (Lolium rigidum) population. Weed Research. 56, 181–188 (2008).

  • 64.

    Collavo, A. & Sattin, M. Resistance to glyphosate in Lolium rigidum selected in Italian perennial crops: bioevaluation, management and molecular bases of target-site resistance. Weed Research. 52, 16–24 (2012).

  • 65.

    Cross, R. B. et al. A Pro-106 to Ala substitution is associated with resistance to glyphosate in annual bluegrass (Poa annua). Weed Science. 63, 613–622 (2015).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Technique could enable cheaper fertilizer production

    Millennial-scale hydroclimate control of tropical soil carbon storage