in

Body mass and geographic distribution determined the evolution of the wing flight-feather molt strategy in the Neornithes lineage

  • 1.

    Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Claramunt, S. & Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Jenni, L. & Winkler, R. Moult and Ageing of European Passerines. (Bloomsbury Publishing, 2020).

  • 5.

    Ginn, H. B. & Melville, D. S. Moult in Birds (BTO guide). (British Trust for Ornithology, 1983).

  • 6.

    Stresemann, E. & Stresemann, V. Die Mauser der Vögel. (Friedländer, 1966).

  • 7.

    Jenni, L. & Winkler, R. The Biology of Moult in Birds. (Bloomsbury Publishing, 2020).

  • 8.

    Kiat, Y., Izhaki, I. & Sapir, N. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. 94, 700–720 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Kiat, Y. et al. Sequential molt in a feathered dinosaur and implications for early paravian ecology and locomotion. Curr. Biol. 30, 3633–3638 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Pyle, P. Identification guide to North American birds: A Compendium of Information on Identifying, Ageing, and Sexing ‘Near-Passerines’ and Passerines in the Hand. (Slate Creek Press, 1997).

  • 11.

    Berlow, E. L., Brose, U. & Martinez, N. D. The, “Goldilocks factor” in food webs. Proc. Natl. Acad. Sci. 105, 4079–4080 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 529, 367–370 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    CAS 
    Article 

    Google Scholar 

  • 14.

    McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Meiri, S., Dayan, T. & Simberloff, D. Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy’s rule. J. Biogeogr. 32, 369–375 (2005).

    Article 

    Google Scholar 

  • 16.

    Millar, J. S. & Hickling, G. J. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5–12 (1990).

    Article 

    Google Scholar 

  • 17.

    Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size. vol. 2 (Cambridge University Press, 1986).

  • 18.

    Pérez-Granados, C. et al. Time available for moulting shapes inter- and intra-specific variability in post-juvenile moult extent in wheatears (genus Oenanthe). J. Ornithol. 162, 255–264 (2020).

    Article 

    Google Scholar 

  • 19.

    Hemborg, C., Sanz, J. & Lundberg, A. Effects of latitude on the trade-off between reproduction and moult: a long-term study with Pied Flycatcher. Oecologia 129, 206–212 (2001).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    de la Hera, I., Díaz, J. a., Pérez-Tris, J. & Tellería, J. L. A comparative study of migratory behaviour and body mass as determinants of moult duration in passerines. J. Avian Biol. 40, 461–465 (2009).

  • 21.

    Kiat, Y. & Sapir, N. Age-dependent modulation of songbird summer feather moult by temporal and functional constraints. Am. Nat. 189, 184–195 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Møller, A. P. The allometry of number of feathers in birds changes seasonally. Avian Res. 6, 1–5 (2015).

    Article 

    Google Scholar 

  • 23.

    Rohwer, S., Ricklefs, R. E., Rohwer, V. G. & Copple, M. M. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, 1246 (2009).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Rohwer, V. G. & Rohwer, S. How do birds adjust the time required to replace their flight feathers?. Auk 130, 699–707 (2013).

    Article 

    Google Scholar 

  • 25.

    Barta, Z. et al. Annual routines of non-migratory birds: optimal moult strategies. Oikos 112, 580–593 (2006).

    Article 

    Google Scholar 

  • 26.

    Barta, Z. et al. Optimal moult strategies in migratory birds. Philos. Trans. R. Soc. London B Biol. Sci. 363, 211–229 (2008).

  • 27.

    Wunderle, J. M. Age-specific foraging proficiency in birds. Curr. Ornithol. 8, 273–324 (1991).

    Google Scholar 

  • 28.

    Marchetti, K. & Price, T. Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol. Rev. 64, 51–70 (1989).

    Article 

    Google Scholar 

  • 29.

    Delhey, K. et al. Partial or complete? The evolution of post-juvenile moult strategies in passerine birds. J. Anim. Ecol. 89, 2896–2908 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Kiat, Y. & Izhaki, I. Why renew fresh feathers? Advantages and conditions for the evolution of complete post-juvenile moult. J. Avian Biol. 47, 47–56 (2016).

    Article 

    Google Scholar 

  • 31.

    Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Linn. Soc. 125, 613–624 (2018).

    Google Scholar 

  • 32.

    Callan, L. M., La Sorte, F. A., Martin, T. E. & Rohwer, V. G. Higher nest predation favors rapid fledging at the cost of plumage quality in nestling birds. Am. Nat. 193, 717–724 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2019).

    Google Scholar 

  • 34.

    Dunning Jr, J. B. CRC Handbook of Avian Body Masses. (CRC Press, 2007).

  • 35.

    Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World. (Cornell Laboratory of Ornithology, 2020).

  • 36.

    Bird species distribution maps of the world. BirdLife International (2019).

  • 37.

    Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr. Zool. 61, 959–965 (2015).

  • 39.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 40.

    Akaike, H. Factor analysis and AIC. Psychometrika 52, 317–332 (1987).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 41.

    Rabosky, D. L. No substitute for real data: a cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution 69, 3207–3216 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Thomas, G. H. An avian explosion. Nature 526, 516–517 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Tung Ho, L. si & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

  • 46.

    Felsenstein, J. A comparative method for both discrete and continuous characters using the threshold model. Am. Nat. 179, 145–156 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Cody, M. L. A general theory of clutch size. Evolution 174–184 (1966).

  • 48.

    Newton, I. The Migration Ecology of Birds. (Academic Press, 2010).

  • 49.

    Newton, I. Speciation and Biogeography of Birds. (Academic Press, 2003).

  • 50.

    Terrill, R. S., Seeholzer, G. F. & Wolfe, J. D. Evolution of breeding plumages in birds: a multiple-step pathway to seasonal dichromatism in New World warblers (Aves: Parulidae). Ecol. Evol. 10, 9223–9239 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Fogden, M. P. L. The seasonality and population dynamics of equatorial forest birds in Sarawak. Ibis 114, 307–343 (1972).

    Article 

    Google Scholar 

  • 52.

    Kiat, Y., Davaasuren, B., Erdenechimeg, T., Troupin, D. & Sapir, N. Large-scale longitudinal climate gradient across the Palearctic region affects passerine feather moult extent. Ecography 44, 124–133 (2020).

    Article 

    Google Scholar 

  • 53.

    Kiat, Y., Vortman, Y. & Sapir, N. Feather moult and bird appearance are correlated with global warming over the last 200 years. Nat. Commun. 10, 1–7 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Bojarinova, J. G., Lehikoinen, E. & Eeva, T. Dependence of postjuvenile moult on hatching date, condition and sex in the Great Tit. J. Avian Biol. 30, 437–446 (1999).

    Article 

    Google Scholar 

  • 55.

    Ryzhanovsky, V. N. Subspecies-specific features of molt in the Common Chiffchaff (Phylloscopus collybita) from Europe and Western Siberia. Russ. J. Ecol. 48, 268–274 (2017).

    Article 

    Google Scholar 

  • 56.

    Slavenko, A. et al. Global patterns of body size evolution in squamate reptiles are not driven by climate. Glob. Ecol. Biogeogr. 28, 471–483 (2019).

    Article 

    Google Scholar 

  • 57.

    Graham, C. H., Storch, D. & Machac, A. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27, 175–187 (2018).

    Article 

    Google Scholar 

  • 58.

    Hone, D. W. E., Dyke, G. J., Haden, M. & Benton, M. J. Body size evolution in Mesozoic birds. J. Evol. Biol. 21, 618–624 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput effect across the K-Pg extinction. Syst. Biol. 67, 1–13 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Dececchi, T. A. & Larsson, H. C. E. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Puttick, M. N., Thomas, G. H. & Benton, M. J. High rates of evolution preceded the origin of birds. Evolution 68, 1497–1510 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Vizcaíno, S. F. & Fariña, R. A. On the flight capabilities and distribution of the giant Miocene bird Argentavis magnificens (Teratornithidae). Lethaia 32, 271–278 (1999).

    Article 

    Google Scholar 

  • 64.

    McNeill Alexander, R. All-time giants: the largest animals and their problems. Palaeontology 41, 1231–1246 (1998).

    Google Scholar 

  • The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

    Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats