in

Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles

  • 1.

    Lenzner, B. et al. A framework for global twenty-first century scenarios and models of biological invasions. Bioscience 69, 697–710. https://doi.org/10.1093/biosci/biz070 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Sun, Y. et al. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Change 4, 1082–1085. https://doi.org/10.1038/nclimate2410 (2014).

    ADS  Article  Google Scholar 

  • 3.

    van der Geest, K. et al. in Loss and Damage from Climate Change Climate Risk Management, Policy and Governance (eds Mechler R. et al.) 221–236 (2018).

  • 4.

    Sage, R. F. Global change biodiversity: A primer. Glob. Change Biol. 26, 3–30. https://doi.org/10.1111/gcb.14893 (2020).

    ADS  Article  Google Scholar 

  • 5.

    Nunez-Mir, G. C., Guo, Q., Rejmanek, M., Iannone, B. V. III. & Fei, S. Predicting invasiveness of exotic woody species using a traits-absed framework. Ecol. Lett. 100, e02797. https://doi.org/10.1002/ecy.2797 (2019).

    Article  Google Scholar 

  • 6.

    Zeng, J. et al. Global warming modifies long-distance migration of an agricultural insect pest. J. Pest. Sci. 93, 569–581. https://doi.org/10.1007/s10340-019-01187-5 (2020).

    Article  Google Scholar 

  • 7.

    Gippet, J. M. W., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102. https://doi.org/10.1016/j.cois.2019.07.005 (2019).

    Article  PubMed  Google Scholar 

  • 8.

    Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biol 16, e2005987. https://doi.org/10.1371/journal.pbio.2005987 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Reaser, J. K. et al. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invas. 22, 1–19. https://doi.org/10.1007/s10530-019-02156-w (2019).

    Article  Google Scholar 

  • 10.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 11.

    Soberon, J. & Townsend Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2, 1–10. https://doi.org/10.17161/bi.v2i0.4 (2005).

    Article  Google Scholar 

  • 12.

    Porfirio, L. L. et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS One 9, e113749. https://doi.org/10.1371/journal.pone.0113749 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151 (IPCC, Geneva, 2014).

    Google Scholar 

  • 14.

    Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling important?. Ecol. Lett. 11, 1135–1146. https://doi.org/10.1111/j.1461-0248.2008.01231.x (2008).

    Article  PubMed  Google Scholar 

  • 15.

    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157. https://doi.org/10.1111/j.1365-2486.2009.02000.x (2010).

    ADS  Article  Google Scholar 

  • 16.

    Faccoli, M. et al. A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Biol. Invas. 22, 1785–1799. https://doi.org/10.1007/s10530-020-02219-3 (2020).

    Article  Google Scholar 

  • 17.

    Kirkendall, L. R. & Faccoli, M. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe. Zookeys 56, 227–251. https://doi.org/10.3897/zookeys.56.529 (2010).

    Article  Google Scholar 

  • 18.

    Raffa, K. F., Grégoire, J.-C. & StaffanLindgren, B. Economics and politics of bark beetles. In Bark Beetles. Biology and Ecology of Native and Invasive Species (eds Fernando, E. V. & Richard, W. H.) 585–614 (Elsevier, New York, 2015).

    Google Scholar 

  • 19.

    Ngoan, N. D., Wilkinson, R. C., Short, D. E., Moses, C. S. & Mangold, J. R. Biology of an introduced ambrosia beetle, Xylosandrus compactus, in Florida. Ann. Entomol. Soc. Am. 69, 872–876. https://doi.org/10.1093/aesa/69.5.872 (1976).

    Article  Google Scholar 

  • 20.

    Hara, A. H. & Beardsley, J. W. Jr. The biology of the black twig borer, Xylosandrus compactus (Eichhoff), in Hawaii. Proc. Hawaiian Entomol. Soc. 13, 55–70 (1979).

    Google Scholar 

  • 21.

    Wood, S. L. New american bark beetles (Coleoptera: Scolytidae) with two recently introduced species. Great Basin Nat. 40, 353–358 (1980).

    Article  Google Scholar 

  • 22.

    Samuelson, G. A. A synopsis of Hawaiian Xyleborini (Coleoptera: Scolytidae). Pac. Insects 23, 50–92 (1981).

    Google Scholar 

  • 23.

    Anderson, D. M. First record of Xyleborus semiopacus in the continental United States (Coleoptera, Scolytidae). Cooper. Econ. Insect Rep. 24, 863–864 (1974).

    Google Scholar 

  • 24.

    Kirkendall, L. Invasive bark beetles (Coleoptera, Curculionidae, Scolytinae) in Chile and Argentina, including two species new for South America, and the correct identity of the Orthotomicus species in Chile and Argentina. Diversity https://doi.org/10.3390/d10020040 (2018).

    Article  Google Scholar 

  • 25.

    Pennachio, F., Roversi, P. F., Francardi, V. & Gatti, E. Xylosandrus crassiusculus (Motschulsky) a bark beetle new to Europe (Coleoptera Scolytidae). Redia 86, 77–80 (2003).

    Google Scholar 

  • 26.

    Garonna, A. P., Dole, S. A., Saracino, A., Mazzoleni, S. & Cristinzio, G. First record of the black twig borer Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) from Europe. Zootaxa 3251, 64–68. https://doi.org/10.11646/zootaxa.3251.1.5 (2012).

    Article  Google Scholar 

  • 27.

    Roques, A. et al. Les scolytes exotiques: Une menace pour le maquis. Phytoma 727, 16–20 (2019).

    Google Scholar 

  • 28.

    Gallego, D., Lencina, J. L., Mas, H., Cevero, J. & Faccoli, M. First record of the granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), in the Iberian Peninsula. Zootaxa 4273, 431–434. https://doi.org/10.11646/zootaxa.4273.3.7 (2017).

    Article  PubMed  Google Scholar 

  • 29.

    Kavčič, A. First record of the Asian ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae, Scolytinae), Slovenia. Zootaxa 4483, 191–193. https://doi.org/10.11646/zootaxa.4483.1.9 (2018).

    Article  PubMed  Google Scholar 

  • 30.

    Spanou, K. et al. in 18th Panhellenic Entomological Congress (Komotini, 2019).

  • 31.

    Leza, M. A. R. et al. First record of the black twig borer, Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) in Spain. Zootaxa 4767, 345–350. https://doi.org/10.11646/zootaxa.4767.2.9 (2020).

    Article  Google Scholar 

  • 32.

    Greco, E. B. & Wright, M. G. Ecology, biology, and management of Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) with emphasis on coffee in Hawaii. J. Integrat. Pest Manag. 6, 1–8. https://doi.org/10.1093/jipm/pmv007 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Kirkendall, L. R., Dal Cortivo, M. & Gatti, E. First record of the ambrosia beetle, Monarthrum mali (Curculionidae, Scolytinae) in Europe. J. Pest. Sci. 81, 175–178. https://doi.org/10.1007/s10340-008-0196-y (2008).

    Article  Google Scholar 

  • 34.

    Jordal, B. H., Beaver, R. A. & Kirkendall, L. R. Breaking taboos in the tropics: Incest promotes colonization by wood-boring beetles. Glob. Ecol. Biogeogr. 10, 345–357. https://doi.org/10.1046/j.1466-822X.2001.00242.x (2001).

    Article  Google Scholar 

  • 35.

    Douglas, H. et al. New Curculionoidea (Coleoptera) records for Canada. Zookeys 309, 13–48. https://doi.org/10.3897/zookeys.309.4667 (2013).

    Article  Google Scholar 

  • 36.

    EPPO. EPPO Technical Document No. 1081, Study on the risk of bark and ambrosia beetles associated with imported non-coniferous wood. (2020).

  • 37.

    Guiot, J. & Cramer, W. Climate change: The 2015 Paris agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468. https://doi.org/10.1126/science.aah5015 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article  Google Scholar 

  • 39.

    Radosavljevic, A., Anderson, R. P. & Araújo, M. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).

    Article  Google Scholar 

  • 40.

    Beaumont, L. J. et al. Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecol. Model. 342, 135–146. https://doi.org/10.1016/j.ecolmodel.2016.10.004 (2016).

    Article  Google Scholar 

  • 41.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article  Google Scholar 

  • 42.

    Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C. & Rossi, J. P. Current and future distribution of the invasive oak processionary moth. Biol. Invas. 22, 523–534. https://doi.org/10.1007/s10530-019-02108-4 (2019).

    Article  Google Scholar 

  • 43.

    Qiao, H., Soberón, J., Peterson, A. T. & Kriticos, D. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136. https://doi.org/10.1111/2041-210x.12397 (2015).

    Article  Google Scholar 

  • 44.

    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261 (2014).

    Article  Google Scholar 

  • 45.

    Gettelman, A. & Rood, R. B. A Users Guide to Earth System Models Earth Systems Data and Models 282 (Springer, Berlin, 2016).

    Google Scholar 

  • 46.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 47.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Dismo: Species Distribution Modeling. R package version 1.1-4. (2017).

  • 48.

    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble platform for species distribution modeling. R package version 3.3-7.1. (2019).

  • 49.

    Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9.4. (2019).

  • 50.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    Google Scholar 

  • 51.

    South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. (2017).

  • 52.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. (2019).

  • 53.

    Department for Environment Food and Rural Affairs. Rapid pest risk analysis for Xylosandrus crassisuculus. 30 (2015).

  • 54.

    ANSES. Évaluation du risque simplifiée sur Xylosandrus compactus (Eichhoff) identifié en France métropolitaine. (2017).

  • 55.

    Kavčič, A. & de Groot, M. Pest risk analysis for the Asian Ambrosia Beetle (Xylosandrus crassiusculus (Motschulsky, 1866)). (Slovenian Forestry Institute, 2017).

  • 56.

    Storer, C., Payton, A., McDaniel, S., Jordal, B. & Hulcr, J. Cryptic genetic variation in an inbreeding and cosmopolitan pest, Xylosandrus crassiusculus, revealed using ddRADseq. Ecol. Evol. 7, 10974–10986. https://doi.org/10.1002/ece3.3625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Ito, M. & Kajimura, H. Phylogeography of an ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae), Japan. Appl. Entomol. Zool. 44, 549–559. https://doi.org/10.1303/aez.2009.549 (2009).

    CAS  Article  Google Scholar 

  • 58.

    Godefroid, M., Rasplus, J.-Y. & Rossi, J.-P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39, 1197–1209. https://doi.org/10.1111/ecog.01474 (2016).

    Article  Google Scholar 

  • 59.

    Godefroid, M., Cruaud, A., Rossi, J. P. & Rasplus, J. Y. Assessing the risk of invasion by Tephritid fruit flies: Intraspecific divergence matters. PLoS One 10, e0135209. https://doi.org/10.1371/journal.pone.0135209 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E. & Thuiller, W. Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 21, 1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x (2012).

    Article  Google Scholar 

  • 61.

    Rey, O. et al. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol. Lett. 15, 1266–1275. https://doi.org/10.1111/j.1461-0248.2012.01849.x (2012).

    Article  PubMed  Google Scholar 

  • 62.

    Ma, Z. & Yang, Q. (2017) Global patterns of aridity trends and time regimes in transition. In Aridity Trend in Northern China (eds Congbin, F. & Huiting, M.) 67–90 (World Scientific Publishing, Singapore, 2017).

    Google Scholar 

  • 63.

    Gugliuzzo, A. et al. Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS One 15, e0239011. https://doi.org/10.1371/journal.pone.0239011 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Formby, J. P. et al. Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biol. Invas. 20, 995–1007. https://doi.org/10.1007/s10530-017-1606-y (2017).

    Article  Google Scholar 

  • 65.

    Reding, M. E., Ranger, C. M., Oliver, J. B. & Schultz, P. B. Monitoring attack and flight activity of Xylosandrus spp. (Coleoptera: Curculionidae: Scolytinae): The influence of temperature on activity. Hortic. Entomol. 106, 1780–1787. https://doi.org/10.1603/ec13134 (2013).

    Article  Google Scholar 

  • 66.

    Gugliuzzo, A., Criscione, G., Siscaro, G., Russo, A. & Tropea Garzia, G. First data on the flight activity and distribution of the ambrosia beetle Xylosandrus compactus (Eichhoff) on carob trees in Sicily. EPPO Bull. 49, 340–351. https://doi.org/10.1111/epp.12564 (2019).

    Article  Google Scholar 

  • 67.

    Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts?. J. Biogeogr. 45, 2175–2189. https://doi.org/10.1111/jbi.13395 (2018).

    Article  Google Scholar 

  • 68.

    Hlásny, T. et al. Living with Bark Beetles: Impacts, Outlook and Management Options 52 (European Forest Institute, Joensuu, 2019).

    Google Scholar 

  • 69.

    Ranger, C. M., Schultz, P. B., Frank, S. D., Chong, J. H. & Reding, M. E. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One 10, e0131496. https://doi.org/10.1371/journal.pone.0131496 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Ranger, C. M., Reding, M. E., Schultz, P. B. & Oliver, J. B. Influence of flood-stress on ambrosia beetle host-selection and implications for their management in a changing climate. Agric. For. Entomol. 15, 56–64. https://doi.org/10.1111/j.1461-9563.2012.00591.x (2013).

    Article  Google Scholar 

  • 71.

    LaBonte, J. R. in USDA Research Forum on Invasive Species. 41–43.

  • 72.

    Castrillo, L. A., Griggs, M. H., Ranger, C. M., Reding, M. E. & Vandenberg, J. D. Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biol. Control 58, 121–126. https://doi.org/10.1016/j.biocontrol.2011.04.010 (2011).

    Article  Google Scholar 

  • 73.

    Horn, S. & Horn, G. N. New host record for the asian ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae). J. Entomol. Sci. 41, 90–91. https://doi.org/10.18474/0749-8004-41.1.90 (2006).

    Article  Google Scholar 

  • 74.

    Wu, T. et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 28, 34–56. https://doi.org/10.1007/s13351-014-3041-7 (2013).

    Article  Google Scholar 

  • 75.

    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991. https://doi.org/10.1175/2011jcli4083.1 (2011).

    ADS  Article  Google Scholar 

  • 76.

    Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184. https://doi.org/10.1002/2013ms000265 (2014).

    ADS  Article  Google Scholar 

  • 77.

    Collins, W. J. et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 4, 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011 (2011).

    ADS  Article  Google Scholar 

  • 78.

    Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165. https://doi.org/10.1007/s00382-012-1636-1 (2013).

    Article  Google Scholar 

  • 79.

    Watanabe, M. et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335. https://doi.org/10.1175/2010jcli3679.1 (2010).

    ADS  Article  Google Scholar 

  • 80.

    Yukimoto, S. et al. A new global climate model of the Meteorological Research Institute: MRI-CGCM3. J. Meteorol. Soc. Jpn 90A, 23–64. https://doi.org/10.2151/jmsj.2012-A02 (2012).

    Article  Google Scholar 

  • 81.

    Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872. https://doi.org/10.5194/gmd-4-845-2011 (2011).

    ADS  Article  Google Scholar 

  • 82.

    Bentsen, M. et al. The Norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720. https://doi.org/10.5194/gmd-6-687-2013 (2013).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem