in

Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean

  • 1.

    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (in the press).

  • 2.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Meltofte, H. (ed.) Arctic Biodiversity Assessment: Status and Trends in Arctic Biodiversity (CAFF International Secretariat, 2013).

  • 4.

    Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).

    Google Scholar 

  • 5.

    Bunse, C. & Pinhassi, J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25, 494–505 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Olli, K. et al. Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea. J. Mar. Syst. 38, 189–204 (2002).

    Google Scholar 

  • 7.

    Riedel, A., Michel, C., Gosselin, M. & LeBlanc, B. Winter–spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J. Mar. Syst. 74, 918–932 (2008).

    Google Scholar 

  • 8.

    Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 1372–1385 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Alonso-Sáez, L., Sánchez, O., Gasol, J. M., Balagué, V. & Pedrós-Alio, C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ. Microbiol. 10, 2444–2454 (2008).

    PubMed 

    Google Scholar 

  • 10.

    Alonso-Sáez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Circumpolar Biodiversity Monitoring Program, Conservation of Arctic Flora and Fauna. State of the Arctic Marine Biodiversity Report (Conservation of Arctic Flora and Fauna International Secretariat, 2017).

  • 13.

    Kirchman, D. L., Cottrell, M. T. & Lovejoy, C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12, 1132–1143 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Galand, P. E., Casamayor, E. O., Kirchman, D. L., Potvin, M. & Lovejoy, C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 3, 860–869 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Pedrós-Alió, C., Potvin, M. & Lovejoy, C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog. Oceanogr. 139, 233–243 (2015).

    Google Scholar 

  • 16.

    Amaral-Zettler, L. et al. in Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 221–245 (Blackwell Publishing Ltd, 2010).

  • 17.

    Christman, G. D., Cottrell, M. T., Popp, B. N., Gier, E. & Kirchman, D. L. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic Ocean in summer and winter. Appl. Environ. Microbiol. 77, 2026–2034 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).

    PubMed 

    Google Scholar 

  • 19.

    Galand, P. E., Lovejoy, C., Pouliot, J., Garneau, M.-È. & Vincent, W. F. Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnol. Oceanogr. 53, 813–823 (2008).

    Google Scholar 

  • 20.

    Nguyen, D. et al. Winter diversity and expression of proteorhodopsin genes in a polar ocean. ISME J. 9, 1835–1845 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Cifuentes-Anticevic, J. et al. Proteorhodopsin phototrophy in Antarctic coastal waters. mSphere 6, e00525–21 (2021).

    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Ghiglione, J.-F. et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc. Natl Acad. Sci. USA 109, 17633–17638 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Kraemer, S., Ramachandran, A., Colatriano, D., Lovejoy, C. & Walsh, D. A. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME J. 14, 79–90 (2020).

    PubMed 

    Google Scholar 

  • 25.

    Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Aagaard, K., Swift, J. H. & Carmack, E. C. Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res. Oceans 90, 4833–4846 (1985).

    Google Scholar 

  • 32.

    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Mestre, M. & Höfer, J. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol. 29, 482–492 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Ciufo, S. et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68, 2386–2392 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Chaumeil, P-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed Central 

    Google Scholar 

  • 38.

    Nelson, W. C., Tully, B. J. & Mobberley, J. M. Biases in genome reconstruction from metagenomic data. PeerJ 8, e10119 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Alneberg, J. et al. Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes. Commun. Biol. 3, 119 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Christensen, M. & Nilsson, A. E. Arctic sea ice and the communication of climate change. Pop. Commun. 15, 249–268 (2017).

    Google Scholar 

  • 42.

    Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN Archaea. Mol. Biol. Evol. 36, 435–446 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Kono, T. et al. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea. Nat. Commun. 8, 14007 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Sato, T., Atomi, H. & Imanaka, T. Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315, 1003–1006 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 10, 2946–2957 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    King, G. M. & Weber, C. F. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat. Rev. Microbiol. 5, 107–118 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed 

    Google Scholar 

  • 50.

    Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. Proc. Natl Acad. Sci. USA 110, 2342–2347 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

    Google Scholar 

  • 53.

    Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).

    PubMed 

    Google Scholar 

  • 54.

    Massana, R. & Logares, R. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ. Microbiol. 15, 1254–1261 (2013).

    PubMed 

    Google Scholar 

  • 55.

    Székely, A. J., Berga, M. & Langenheder, S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 7, 61–71 (2013).

    PubMed 

    Google Scholar 

  • 56.

    Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 66 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Logares, R. et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Ruiz-González, C. et al. Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol. Ecol. 28, 1930–1945 (2019).

    PubMed 

    Google Scholar 

  • 59.

    Staley, J. T. & Gosink, J. J. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53, 189–215 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Chaffron, S. et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci. Adv. 7, eabg1921 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Estrada, E. Characterization of topological keystone species: local, global and “meso-scale” centralities in food webs. Ecol. Complex. 4, 48–57 (2007).

    Google Scholar 

  • 62.

    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Tully, B. J., Sachdeva, R., Graham, E. D. & Heidelberg, J. F. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ 2017, e3558 (2017).

    Google Scholar 

  • 64.

    Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 4, 604 (2021).

  • 65.

    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Huang, X. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487–2489 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Jain, C., Rodriguez-R, L. M., Phillipy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Vieira-Silva, S. & Rocha, E. P. C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 6, e1000808 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. F1000Res. 9, ISCB Comm J-304 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaeota with ultrasmall genomes are widespread in the ocean. mSystems 5, e00415–20 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2––approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Investing wisely in land restoration

    Effect of biostimulants on the growth, yield and nutritional value of Capsicum annuum grown in an unheated plastic tunnel