in

Juvenile hormone analog enhances Zika virus infection in Aedes aegypti

  • 1.

    Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Liu, N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Roush, R. T. Occurrence, genetics and management of insecticide resistance. Parasitol. Today 9, 174–179 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Sternberg, E. D. & Thomas, M. B. Insights from agriculture for the management of insecticide resistance in disease vectors. Evol. Appl. 11, 404–414 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Raymond, M., Berticat, C., Weill, M., Pasteur, N. & Chevillon, C. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? in Microevolution Rate, Pattern, Process 287–296 (Springer, 2001).

  • 6.

    Parker-Crockett, C., Connelly, C. R., Siegfried, B. & Alto, B. W. Influence of pyrethroid resistance on vector competency for Zika virus by Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2, 19 (2021).

    Google Scholar 

  • 7.

    Muturi, E. J., Kim, C., Alto, B. W., Berenbaum, M. R. & Schuler, M. A. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop. Med. Int. Heal. 16, 955–964 (2011).

    CAS 
    Article 

    Google Scholar 

  • 8.

    James, R. R. & Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 109, 175–182 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Hauser, G., Thiévent, K. & Koella, J. C. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae. Parasit. Vectors 13, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Hauser, G. & Koella, J. C. Larval exposure to a pyrethroid insecticide and competition for food modulate the melanisation and antibacterial responses of adult Anopheles gambiae. Sci. Rep. 10, 1–8 (2020).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 27, 16052–16068 (2020).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Nijhout, H. F. & Williams, C. M. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 61, 481–491 (1974).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Nijhout, H. F. & Wheeler, D. E. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109–133 (1982).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Ishaaya, I. & Horowitz, A. R. Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). J. Econ. Entomol. 85, 2113–2117 (1992).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ali, A., Nayar, J. K. & Xue, R.-D. Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. J. Am. Mosq. Control Assoc. 11, 72–76 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Maoz, D. et al. Community effectiveness of pyriproxyfen as a dengue vector control method: a systematic review. PLoS Negl. Trop. Dis. 11, e0005651 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Hustedt, J. C., Boyce, R., Bradley, J., Hii, J. & Alexander, N. Use of pyriproxyfen in control of Aedes mosquitoes: a systematic review. PLoS Negl. Trop. Dis. 14, e0008205 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Alomar, A. A., Eastmond, B. H. & Alto, B. W. The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti. PLoS Negl. Trop. Dis. 14, e0008846 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Alomar, A. A. & Alto, B. W. Mosquito responses to lethal and nonlethal effects of predation and an insect growth regulator. Ecosphere 12, e03452 (2021).

    Article 

    Google Scholar 

  • 20.

    Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Buckner, E. A., Williams, K. F., Marsicano, A. L., Latham, M. D. & Lesser, C. R. Evaluating the vector control potential of the In2Care® mosquito trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. J. Am. Mosq. Control Assoc. 33, 193–199 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Fiaz, M. et al. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. Peer J. 7, e7489 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Kamal, H. A. & Khater, E. I. M. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. J. Egypt Soc. Parasitol. 40, 565–574 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Yadav, K., Dhiman, S., Acharya, B. N., Ghorpade, R. R. & Sukumaran, D. Pyriproxyfen treated surface exposure exhibits reproductive disruption in dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007842 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Moltini-Conclois, I., Stalinski, R., Tetreau, G., Després, L. & Lambrechts, L. Larval exposure to the bacterial insecticide Bti enhances dengue virus susceptibility of adult Aedes aegypti mosquitoes. Insects 9, 193 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Heugens, E. H. W., Hendriks, A. J., Dekker, T., van Straalen, N. M. & Admiraal, W. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol. 31, 247–284 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Zhu, J. & Noriega, F. G. The role of juvenile hormone in mosquito development and reproduction. Adv. In Insect Phys. 51, 93–113 (2016).

    Article 

    Google Scholar 

  • 30.

    El-Shazly, M. M. & Refaie, B. M. Larvicidal effect of the juvenile hormone mimic pyriproxyfen on Culex pipiens. J. Am. Mosq. Control Assoc. News 18, 321–328 (2002).

    CAS 

    Google Scholar 

  • 31.

    Moura, L., de Nadai, B. L. & Corbi, J. J. What does not kill it does not always make it stronger: High temperatures in pyriproxyfen treatments produce Aedes aegypti adults with reduced longevity and smaller females. J. Asia. Pac. Entomol. 23, 529–535 (2020).

    Article 

    Google Scholar 

  • 32.

    Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti-a review. Mem. Inst. Oswaldo Cruz 108, 11–17 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Baud, D., Gubler, D. J., Schaub, B., Lanteri, M. C. & Musso, D. An update on Zika virus infection. Lancet 390, 2099–2109 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    He, D., Gao, D., Lou, Y., Zhao, S. & Ruan, S. A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci. Rep. 7, 1–6 (2017).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Winokur, O. C., Main, B. J., Nicholson, J. & Barker, C. M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 14, 150 (2020).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Glushakova, L. G. et al. Optimization of cationic (Q)-paper for detection of arboviruses in infected mosquitoes. J. Virol. Methods 261, 71–79 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Burkett-Cadena, N. D. et al. Evaluation of the honey-card technique for detection of transmission of arboviruses in Florida and comparison with sentinel chicken seroconversion. J. Med. Entomol. 53, 1449–1457 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Alto, B. W. et al. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl. Trop. Dis. 11, e0005724 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Nasci, R. S. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J. Am. Mosq. Control Assoc. 2, 61–62 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Van Handel, E. & Day, J. F. Correlation between wing length and protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182 (1989).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Grill, C. P. & Juliano, S. A. Predicting species interactions based on behaviour: predation and competition in container-dwelling mosquitoes. J. Anim. Ecol. 6, 63–76 (1996).

    Article 

    Google Scholar 

  • 43.

    Chandrasegaran, K. & Juliano, S. A. How do trait-mediated non-lethal effects of predation affect population-level performance of mosquitoes?. Front. Ecol. Evol. 7, 25 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Knecht, H., Richards, S. L., Balanay, J. A. G. & White, A. V. Impact of mosquito age and insecticide exposure on susceptibility of Aedes albopictus (Diptera: Culicidae) to Infection with Zika Virus. Pathogens 7, 67 (2018).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Öhlund, P., Lundén, H. & Blomström, A. L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 55, 127–137 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Antonio, G. E., Sanchez, D., Williams, T. & Marina, C. F. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag. Sci. Former. Pestic. Sci. 65, 323–326 (2009).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Muturi, E. J. & Alto, B. W. Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector-Borne Zoonotic Dis. 11, 1157–1163 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Alto, B. W. & Lord, C. C. Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus. PLoS Negl. Trop. Dis. 10, e0004370 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Jirakanjanakit, N. et al. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop. Med. Int. Heal. 12, 1354–1360 (2007).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Polson, K. A., Brogdon, W. G., Rawlins, S. C. & Chadee, D. D. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Rev. Panam. Salud Pública 32, 1–8 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Glunt, K. D., Oliver, S. V., Hunt, R. H. & Paaijmans, K. P. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar. J. 17, 1–8 (2018).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Benelli, G., Wilke, A. B. B., Bloomquist, J. R., Desneux, N. & Beier, J. C. Overexposing mosquitoes to insecticides under global warming: a public health concern?. Sci. Total Environ. 762, 143069 (2021).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Alto, B. W. & Bettinardi, D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am. J. Trop. Med. Hyg. 88, 497–505 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Mourya, D. T., Yadav, P. & Mishra, A. C. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am. J. Trop. Med. Hyg. 70, 346–350 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Adelman, Z. N. et al. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis 7, e2239 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Hardy, J. L., Meyer, R. P., Presser, S. B. & Milby, M. M. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. Am. J. Trop. Med. Hyg. 42, 500–511 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Kay, B. H., Fanning, I. A. N. D. & Mottram, P. Rearing temperature influences flavivirus vector competence of mosquitoes. Med. Vet. Entomol. 3, 415–422 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Westbrook, C. J., Reiskind, M. H., Pesko, K. N., Greene, K. E. & Lounibos, L. P. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector-Borne Zoonotic Dis. 10, 241–247 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Gotelli, N. J. A Primer of Ecology (Sinauer Associate. Inc., 2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Eat me, or don’t eat me?

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research