in

Long-term increased grain yield and soil fertility from intercropping

  • 1.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Article 

    Google Scholar 

  • 2.

    Bélanger, J. & Pilling, D. (eds) The State of the World’s Biodiversity for Food and Agriculture (FAO Commission on Genetic Resources for Food and Agriculture, 2019).

  • 3.

    Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Article 

    Google Scholar 

  • 4.

    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).

    Article 

    Google Scholar 

  • 5.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Tilman, D. Benefits of intensive agricultural intercropping. Nat. Plants 6, 604–605 (2020).

    Article 

    Google Scholar 

  • 7.

    Gomez, A. A. & Gomez, K. A. Multiple Cropping in the Humid Tropics of Asia (IDRC, 1983).

  • 8.

    Li, L. et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196 (2007).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Li, C. J. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).

    Article 

    Google Scholar 

  • 10.

    Xu, Z. et al. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; a meta-analysis. Field Crops Res. 246, 107661 (2020).

    Article 

    Google Scholar 

  • 11.

    Zhu, Y. Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Li, W. X. et al. Effects of intercropping and nitrogen application on nitrate present in the profile of an Orthic Anthrosol in Northwest China. Agric. Ecosyst. Environ. 105, 483–491 (2005).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Manevski, K., Borgesen, C. D., Andersen, M. N. & Kristensen, I. S. Reduced nitrogen leaching by intercropping maize with red fescue on sandy soils in North Europe: a combined field and modeling study. Plant Soil 388, 67–85 (2015).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).

    Article 

    Google Scholar 

  • 16.

    Zhou, B. R. et al. Plant functional groups asynchrony keep the community biomass stability along with the climate change—a 20-year experimental observation of alpine meadow in eastern Qinghai-Tibet Plateau. Agric. Ecosyst. Environ. 282, 49–57 (2019).

    Article 

    Google Scholar 

  • 17.

    Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).

    Article 

    Google Scholar 

  • 18.

    Pohl, M., Alig, D., Körner, C. & Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324, 91–102 (2009).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Pérès, G. et al. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373, 285–299 (2013).

    Article 

    Google Scholar 

  • 20.

    Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B. & Bardgett, R. D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140–1149 (2016).

    Article 

    Google Scholar 

  • 21.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Dybzinski, R., Fargione, J. E., Zak, D. R., Fornara, D. & Tilman, D. Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158, 85–93 (2008).

    Article 

    Google Scholar 

  • 23.

    Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163 (1982).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Amézketa, E. Soil aggregate stability: a review. J. Sustain. Agric. 14, 83–151 (1999).

    Article 

    Google Scholar 

  • 25.

    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).

    Article 

    Google Scholar 

  • 26.

    Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Christensen, B. T. & Johnston, A. E. in Developments in Soil Science (eds Gregorich, E. G. & Carter, M. R.) 399–430 (Elsevier, 1997).

  • 28.

    Fornara, D. A. & Tilman, D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology 93, 2030–2036 (2012).

    Article 

    Google Scholar 

  • 29.

    Cong, W. F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Zhang, W. F. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Wan, N. F. et al. Global synthesis of effects of plant species diversity on trophic groups and interactions. Nat. Plants 6, 503–510 (2020).

    Article 

    Google Scholar 

  • 32.

    Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).

    Article 

    Google Scholar 

  • 33.

    Status of the World’s Soil Resources Main Report (FAO and ITPS, 2015).

  • 34.

    Jensen, E. S. & Williamson, S. in Replacing Chemicals with Biology: Phasing Out Highly Hazardous Pesticides with Agroecology (eds Watts, M. & Williamson, S.) 162–167 (Pestice Action Network International, 2015).

  • 35.

    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    Article 

    Google Scholar 

  • 36.

    Zhang, R. Z. et al. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Sci. Total Environ. 740, 139810 (2020).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Bao, S. D. Analysis on Soil and Agricultural Chemistry (China Agricultural Press, 2005).

  • 38.

    Kemper, W. D. & Rosenau, R. C. Aggregate Stability and Size Distribution: Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods (American Society of Agronomy, 1986).

  • 39.

    Willey, R. W. Evaluation and presentation of intercropping advantages. Exp. Agric. 21, 119–133 (1985).

    Article 

    Google Scholar 

  • 40.

    van Ruijven, J. & Berendse, F. Contrasting effects of diversity on the temporal stability of plant populations. Oikos 116, 1323–1330 (2007).

    Article 

    Google Scholar 

  • 41.

    The Price Division, National Development and Reform Commission of China The National Agricultural Products Cost–Benefit Compilation of Information (China Statistics Press, 2010–2019).

  • 42.

    R Core Team R: A Language and Environment for Statistical Computing v.3.6.2 (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    For campus “porosity hunters,” climate resilience is the goal

    New “risk triage” platform pinpoints compounding threats to US infrastructure