in

New evidence from exceptionally “well-preserved” specimens sheds light on the structure of the ammonite brachial crown

  • 1.

    Klug, C. & Lehmann, J. Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. in Ammonoid Paleobiology: From Anatomy to Ecology 507–529 (Springer, 2015).

  • 2.

    Klug, C. et al. Anatomy and evolution of the first Coleoidea in the Carboniferous. Commun. Biol. 2, 1–12 (2019).

    Article 

    Google Scholar 

  • 3.

    Klug, C., Schweigert, G., Tischlinger, H. & Pochmann, H. Failed prey or peculiar necrolysis? Isolated ammonite soft body from the Late Jurassic of Eichstätt (Germany) with complete digestive tract and male reproductive organs. Swiss J. Palaeontol. 140, 1–14 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Maeda, H. & Seilacher, A. Ammonoid taphonomy. In Ammonoid paleobiology 543–578 (Springer, 1996).

  • 5.

    Wani, R. & Gupta, N. S. Ammonoid taphonomy. In Ammonoid Paleobiology: from Macroevolution to Paleogeography 5, 555–598 (2015).

  • 6.

    Klug, C. & Vallon, L. H. Regurgitated ammonoid remains from the latest Devonian of Morocco. Swiss J. Palaeontol. 138, 87–97 (2019).

    Article 

    Google Scholar 

  • 7.

    Hoffmann, R., Stevens, K., Keupp, H., Simonsen, S. & Schweigert, G. Regurgitalites—a window into the trophic ecology of fossil cephalopods. J. Geol. Soc. 177, 82–102 (2020).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Gale, A. S., Kennedy, W. J. & Martill, D. Mosasauroid predation on an ammonite-Pseudaspidoceras-from the Early Turonian of south-eastern Morocco. Acta Geol. Pol. 67, 31–46 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Vullo, R. Direct evidence of hybodont shark predation on Late Jurassic ammonites. Naturwissenschaften 98, 545–549 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Ibáñez, C. M. & Keyl, F. Cannibalism in cephalopods. Rev. Fish Biol. Fish. 20, 123–136 (2010).

    Article 

    Google Scholar 

  • 11.

    Lehmann, J., Solarczyk, A. & Friedrich, O. Belemnoid arm hooks from the Middle-Upper Albian boundary interval: taxonomy and palaeoecological significance. Paläontol. Z. 85, 287–302 (2011).

    Article 

    Google Scholar 

  • 12.

    Stevens, G. Palaeobiological and morphological aspects of Jurassic Onychites (cephalopod hooks) and new records from the New Zealand Jurassic. NZ J. Geol. Geophys. 53, 395–412 (2010).

    Article 

    Google Scholar 

  • 13.

    Klug, C., Davesne, D., Fuchs, D. & Argyriou, T. First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece. Swiss J. Palaeontol. 139, 1–13 (2020).

    Article 

    Google Scholar 

  • 14.

    Engeser, T. & Reitner, J. Beiträge zur Systematik von phragmokontragenden Coleoiden aus dem Untertithonium (Malm zeta,” Solnhofener Plattenkalk”) von Solnhofen und Eichstätt (Bayern). N. Jb. Geol. und Paläont. 527–545 (1981).

  • 15.

    Reitner, J. & Urlichs, M. Echte Weichteilbelemniten aus dem Untertoarcium (Posidonienschiefer) Südwestdeutschlands. N. Jb. Geol. Paläont. 165, 450–465 (1983).

    Google Scholar 

  • 16.

    Fuchs, D., Donovan, D. T. & Keupp, H. Taxonomic revision of “Onychoteuthisconocauda Quenstedt, 1849 (Cephalopoda: Coleoidea). N. Jb. Geol. Pal. A. 270, 245–255 (2013).

    Article 

    Google Scholar 

  • 17.

    Donovan, D. T. & Crane, M. D. The type material of the Jurassic cephalopod Belemnotheutis. Palaeontology 35, 273–296 (1992).

    Google Scholar 

  • 18.

    Klug, C., Schweigert, G., Fuchs, D. & Dietl, G. First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia 43, 445–456 (2010).

    Article 

    Google Scholar 

  • 19.

    Hart, M. B., Hughes, Z., Page, K. N., Price, G. D. & Smart, C. W. Arm hooks of coleoid cephalopods from the Jurassic succession of the Wessex Basin, Southern England. Proc. Geol. Assoc. 130, 326–338 (2019).

    Article 

    Google Scholar 

  • 20.

    Doyle, P. & Shakides, E. V. The Jurassic Belemnite Suborder Belemnotheutina. Palaeontology 47, 983–998 (2004).

    Article 

    Google Scholar 

  • 21.

    Doguzhaeva, L. et al. An Early Triassic gladius associated with soft tissue remains from Idaho, USA—a squid-like coleoid cephalopod at the onset of Mesozoic Era. APP 63, 341–355 (2018).

    Article 

    Google Scholar 

  • 22.

    Doguzhaeva, L. A., Summesberger, H., Mutvei, H. & Brandstaetter, F. The mantle, ink sac, ink, arm hooks and soft body debris associated with the shells in Late Triassic coleoid cephalopod Phragmoteuthis from the Austrian Alps. Palaeoworld 16, 272–284 (2007).

    Article 

    Google Scholar 

  • 23.

    Engeser, T. S. & Clarke, M. R. Cephalopod hooks, both recent and fossil. in Paleontology and Neontology of Cephalopods 133–151 (Elsevier, 1988).

  • 24.

    Johnson, R. G. & Richardson, E. S. Ten-armed fossil cephalopod from the Pennsylvanian of Illinois. Science 159, 526–528 (1968).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Fuchs, D. & Hoffmann, R. Treatise Online no. 91: Part M, Chapter 10: Arm Armature in Belemnoid Coleoids. Treatise Online (2017).

  • 26.

    Fuchs, D., von Boletzky, S. & Tischlinger, H. New evidence of functional suckers in belemnoid coleoids (Cephalopoda) weakens support for the ‘Neocoleoidea’ concept. J. Molluscan Stud. 76, 404–406 (2010).

    Article 

    Google Scholar 

  • 27.

    Fuchs, D., Heyng, A. M. & Keupp, H. Acanthoteuthis problematica Naef, 1922, an almost forgotten taxon and its role in the interpretation of cephalopod arm armatures. N. Jb. Geol. Pal. A. 269, 241–250 (2013).

    Article 

    Google Scholar 

  • 28.

    Young, R. E., Vecchione, M. & Donovan, D. T. The evolution of coleoid cephalopods and their present biodiversity and ecology. S. Afr. J. Mar. Sci. 20, 393–420 (1998).

    Article 

    Google Scholar 

  • 29.

    Landman, N. H. & Waagé, K. M. Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull. AMNH 215, 257 (1993).

    Google Scholar 

  • 30.

    Kennedy, W. J., Landman, N. H., Cobban, W. A. & Larson, N. L. Jaws and Radulae in Rhaeboceras, a Late Cretaceous Ammonite. 20 (2002).

  • 31.

    Kruta, I., Landman, N., Rouget, I., Cecca, F. & Tafforeau, P. The radula of the Late Cretaceous scaphitid ammonite Rhaeboceras halli (Meek and Hayden, 1856). Palaeontology 56, 9–14 (2013).

    Article 

    Google Scholar 

  • 32.

    Kruta, I., Bardin, J., Smith, C. P. A., Tafforeau, P. & Landman, N. H. Enigmatic hook-like structures in Cretaceous ammonites (Scaphitidae). Palaeontology 63, 301–312 (2020).

    Article 

    Google Scholar 

  • 33.

    Miserez, A. et al. Microstructural and biochemical characterization of the nanoporous sucker rings from Dosidicus gigas. Adv. Mater. 21, 401–406 (2009).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Kulicki, C. & Szaniawski, K. Cephalopod arm hooks from the Jurassic of Poland. Acta Palaeontol. Pol. 17, 379–419 (1972).

    Google Scholar 

  • 35.

    Jereb, P. & Roper, C. F. E. FAO Cephalopods of the World No. 4 Vol. 2, Oegopsid and Myopsid squids, 605 (Rome, 2010).

  • 36.

    Riegraf, W. v, Werner, G. & Lörcher, F. Der Posidonienschiefer: Biostratigraphie, Fauna und Fazies des Südwestdeutschen Untertoarciums, 1–195. (F. Enke, 1984)..

  • 37.

    Sasaki, M. A monograph of dibranchiate cephalopods of the Japanese and adjacent waters. J. Coll. Agric. Hokkaido Univ. 20, 1–357 (1929).

    Google Scholar 

  • 38.

    Evans, A. A systematic review of the squid family Cranchiidae (Cephalopoda: Oegopsida) in the Pacific Ocean. (PhD diss., Auckland University of Technology, 2018).

  • 39.

    Naef, A. Die fossilen Tintenfische. 322 pp. (1922).

  • 40.

    Kristensen, T. K. Scanning electron microscopy of hook development in Gonatus fabricii (Lichtenstein, 1818) (Mollusca: Cephalopoda). Vidensk. Meddel. Natuirist. Foren. Kjobenhavn. 140, 111–116 (1977).

  • 41.

    Hart, M. B., Arratia, G., Moore, C. & Ciotti, B. J. Life and death in the Jurassic seas of Dorset, Southern England. Proc. Geol. Assoc. 131, 629–638 (2020).

    Article 

    Google Scholar 

  • 42.

    Jenny, D. et al. Predatory behaviour and taphonomy of a Jurassic belemnoid coleoid (Diplobelida, Cephalopoda). Sci. Rep. 9, 1–11 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Kröger, B., Vinther, J. & Fuchs, D. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. BioEssays 33, 602–613 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Jereb, P. & Roper, C. F. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae). 262 (2006).

  • 45.

    Bello, G., Potoschi, A. & Berdar, A. Adult of Ancistrocheirus lesueurii caught in the straits of Messina (Cephalopoda: Ancistrocheiridae). Bollettino Malacologico 29, 259–266 (1993).

    Google Scholar 

  • 46.

    Okutani, T. Rare and interesting squid from Japan V.: A gravid female of Ancistrocheirus lesueuri (D’ORBIGNY, 1839) Collected in the Kuroshio Area (Oegopsida: Enoploteuthidae). Venus (Japanese Journal of Malacology) 35, 73–81 (1976).

  • 47.

    Tsuchiya, K. Abralia fasciolata, a new species of enoploteuthid squid from the western Indian Ocean (Cephalopoda: Oegopsida). Bull. Natl. Sci. Museum 17, 69–79 (1991).

    Google Scholar 

  • 48.

    Hidaka, K. & Kubodera, T. Squids of the genus Abralia (Cephalopoda: Enoploteuthidae) from the western tropical Pacific with a description of Abralia omiae, a new species. Bull. Mar. Sci. 66, 417–443 (2000).

    Google Scholar 

  • 49.

    Bolstad, K. S. R. Systematics of the Onychoteuthidae Gray, 1847 (Cephalopoda: Oegopsida). Zootaxa 2696, 1–186 (2010).

    Article 

    Google Scholar 

  • 50.

    Hoffmann, R., Weinkauf, M. F. G. & Fuchs, D. Grasping the shape of belemnoid arm hooks—a quantitative approach. Paleobiology 43, 304–320 (2017).

    Article 

    Google Scholar 

  • 51.

    Mangold K. Les organes génitaux. In Traité de zoologie, Céphalopodes Tome V fascicule 4, Grassé, P. P (ed). 459–492. (Masson, 1989)

  • 52.

    Rosa, R. & Seibel, B. A. Voyage of the argonauts in the pelagic realm: physiological and behavioural ecology of the rare paper nautilus, Argonauta nouryi. ICES J. Mar. Sci. 67, 1494–1500 (2010).

    Article 

    Google Scholar 

  • 53.

    Jackson, G. D. & O’Shea, S. Unique hooks in the male scaled squid Lepidoteuthis grimaldi. J. Mar. Biol. Ass. 83, 1099–1100 (2003).

    Article 

    Google Scholar 

  • 54.

    Naglik, C., Tajika, A., Chamberlain, J. & Klug, C. Ammonoid locomotion. In Ammonoid Paleobiology: From anatomy to ecology 649–688 (Springer, 2015).

  • 55.

    Hoffmann, R., Lemanis, R., Naglik, C. & Klug, C. Ammonoid buoyancy. In Ammonoid paleobiology: From Anatomy to Ecology 613–648 (Springer, 2015).

  • 56.

    Ebel, K. Swimming abilities of ammonites and limitations. Paläontol. Z. 64, 25–37 (1990).

    Article 

    Google Scholar 

  • 57.

    Cobban, W. A., Walaszczyk, I., Obradovich, J. D. & McKinney, K. C. A USGS zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. U.S. Geol. Surv. Open-File Rep. 1250, 45 (2006).

    Google Scholar 

  • 58.

    Landman, N. H., Kennedy, W. J., Cobban, W. A. & Larson, N. L. Scaphites of the “Nodosus Group” from the Upper Cretaceous (Campanian) of the Western Interior of North America. Bull. Am. Mus. Nat. Hist. 342, 1–242 (2010).

    Article 

    Google Scholar 

  • 59.

    Lee, H., Chung, M. K., Kang, H., Kim, B.-N. & Lee, D. S. Computing the Shape of Brain Networks Using Graph Filtration and Gromov-Hausdorff Metric. in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011. 6892, 302–309 (Springer Berlin Heidelberg, 2011).

  • 60.

    Xia, K. & Wei, G.-W. Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Methods Biomed. Eng. 30, 814–844 (2014).

    MathSciNet 
    Article 

    Google Scholar 

  • 61.

    Townsend, J., Micucci, C. P., Hymel, J. H., Maroulas, V. & Vogiatzis, K. D. Representation of molecular structures with persistent homology for machine learning applications in chemistry. Nat. Commun. 11, 1–9 (2020).

    Google Scholar 

  • 62.

    Xia, K. Persistent homology analysis of ion aggregations and hydrogen-bonding networks. Phys. Chem. Chem. Phys. 13, 13448–13460 (2018).

    Article 

    Google Scholar 

  • 63.

    Krishnapriyan, A. S., Montoya, J., Hummelshøj, J. & Morozov, D. Persistent homology advances interpretable machine learning for nanoporous materials. arXiv:2010.00532 [cond-mat, physics:physics] (2020).

  • 64.

    Fasy, B. T., Kim, J., Lecci, F. & Maria, C. Introduction to the R package TDA. arXiv preprint arXiv:1411.1830 (2014).

  • 65.

    Adler, D., Nenadic, O. & Zucchini, W. Rgl: A r-library for 3d visualization with opengl. in Proceedings of the 35th Symposium of the Interface: Computing Science and Statistics, Salt Lake City 35, 1–11 (2003).

  • 66.

    Roper, C. F., Sweeney, M. J. & Nauen, C. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries, 277 (FAO Fish Synopsys, 1984).


  • Source: Ecology - nature.com

    Exploring the future of humanitarian technology

    Bayesian analysis of Enceladus’s plume data to assess methanogenesis