in

Population genetic structure of raccoons as a consequence of multiple introductions and range expansion in the Boso Peninsula, Japan

  • 1.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-Being Vol. 5, 563 (Island Press, 2005).

    Google Scholar 

  • 2.

    Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invas. 1(1), 3–19 (1999).

    Article 

    Google Scholar 

  • 3.

    Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6(5), 238–246 (2008).

    Article 

    Google Scholar 

  • 4.

    Mazza, G., Tricarico, E., Genovesi, P. & Gherardi, F. Biological invaders are threats to human health: An overview. Ethol. Ecol. Evol. 26, 112–129 (2014).

    Article 

    Google Scholar 

  • 5.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol. Econ 52, 273–288 (2005).

    Article 

    Google Scholar 

  • 6.

    Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8(3), 135–144 (2010).

    Article 

    Google Scholar 

  • 7.

    Lindenmayer, D. B. & Likens, G. E. Adaptive monitoring: A new paradigm for long-term research and monitoring. Trends Ecol. Evol. 24(9), 482–486 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Lawson Handley, L.-J. et al. Ecological genetics of invasive alien species. Biocontrol 56, 409–428 (2011).

    Article 

    Google Scholar 

  • 9.

    Fischer, M. L. et al. Multiple founder effects are followed by range expansion and admixture during the invasion process of the raccoon (Procyon lotor) in Europe. Divers. Distrib. 23(4), 409–420 (2017).

    Article 

    Google Scholar 

  • 10.

    Salgado, I. Is the raccoon (Procyon lotor) out of control in Europe?. Biodivers. Conserv. 27, 2243–2256 (2018).

    Article 

    Google Scholar 

  • 11.

    Asada, M. “Lag-phase management” as a population management method in low density areas in sika deer (Cervus nippon) and racoon (Procyon lotor). Honyurui Kagaku (Mamm. Sci.) 53(2), 243–255 (2013).

    Google Scholar 

  • 12.

    Gehrt, S. D. & Fritzell, E. K. Duration of familial bonds and dispersal patterns for raccoons in south Texas. J. Mammal. 79(3), 859–872. https://doi.org/10.2307/1383094 (1998).

    Article 

    Google Scholar 

  • 13.

    Gascoigne, J., Berec, L., Gregory, S. & Courchamp, F. Dangerously few liaisons: A review of mate-finding Allee effects. Popul. Ecol. 51(3), 355–372 (2009).

    Article 

    Google Scholar 

  • 14.

    Porter, W. F., Mathews, N. E., Underwood, H. B., Sage, R. W. & Behrend, D. F. Social organization in deer: Implications for localized management. Environ. Manage. 15(6), 809–814 (1991).

    Article 
    ADS 

    Google Scholar 

  • 15.

    Long, J. Introduced Mammals of the World: Their History Distribution and Influence (CSIRO Publishing, 2003).

    Book 

    Google Scholar 

  • 16.

    Gehrt, S. D. Wild mammals of North America. In Raccoons and Allies (eds Feldhamer, G. A. et al.) 611–634 (CABI, 2003).

    Google Scholar 

  • 17.

    Ikeda, T., Asano, M., Matoba, Y. & Abe, G. Present status of invasive alien raccoon and its impact in Japan. Glob. Environ. Res. 8, 125–131 (2004).

    Google Scholar 

  • 18.

    Ministry of the Environment Government of Japan. The Birds and Beasts (Bears) Need Care Habitation Distribution Survey in 2017. Survey Report, Raccoon, Palm civet, Nutria (2018).

  • 19.

    Okuyama, M. W. et al. Genetic population structure of invasive raccoons (Procyon lotor) in Hokkaido, Japan: Unique phenomenon caused by pet escape or abandonment. Sci. Rep. 10(1), 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Ochiai, K., Ishii, M. & Furukawa, T. Invasion and distribution of the raccoon, Procyon lotor, in Chiba Prefecture, Central Japan. J. Nat. Hist. Museum Inst. 7, 21–27 (2002).

    Google Scholar 

  • 21.

    Asada, M. Bayesian estimation of population size in raccoon (Procyon lotor) using state-space model based on removal sampling. Honyurui Kagaku (Mamm. Sci.) 54, 207–218 (2014).

    Google Scholar 

  • 22.

    Sugai, T., Matsushima, H. & Mizuno, K. Last 400 ka landform evolution of the Kanto Plain: Under the influence of concurrent glacio-eustatic sea level changes and tectonic activity. J. Geogr. Chigaku Zasshi 122(6), 921–948 (2013).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Bagan, H. & Yamagata, Y. Landsat analysis of urban growth: How Tokyo became the world’s largest megacity during the last 40 years. Remote Sens. Environ. 127, 210–222 (2012).

    Article 
    ADS 

    Google Scholar 

  • 24.

    Japan Meteorology Agency. Search Past Weather Data (2021). http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_h1.php?prec_no=45&block_no=00&year=2020&month=&day=&view=p1. Accessed 28 Feb 2021.

  • 25.

    Geospatial Information Authority of Japan. https://maps.gsi.go.jp/. Accessed 4 Apr 2021.

  • 26.

    Frantz, A. C. et al. Limited mitochondrial DNA diversity is indicative of a small number of founders of the German raccoon (Procyon lotor) population. Eur. J. Wildl. Res. 59, 665–674 (2013).

    Article 

    Google Scholar 

  • 27.

    Cullingham, C. I., Kyle, C. J., Pond, B. A. & White, B. N. Genetic structure of raccoons in eastern North America based on mtDNA: Implications for subspecies designation and rabies disease dynamics. Can. J. Zool. 86, 947–958 (2008).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Cullingham, C. I., Kyle, C. J. & White, B. N. Isolation, characterization and multiplex genotyping of raccoon tetranucleotide microsatellite loci. Mol. Ecol. Notes 6(4), 1030–1032 (2006).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Fike, J. A., Drauch, A. M., Beasley, J. C., Dharmarajan, G. & Rhodes, O. E. Development of 14 multiplexed microsatellite loci for raccoons Procyon lotor: Primer note. Mol. Ecol. Notes 7(3), 525–527 (2007).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Siripunkaw, C. et al. Isolation and characterization of polymorphic microsatellite loci in the raccoon (Procyon lotor). Mol. Ecol. Resour. 8(1), 199–201 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Koressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10), 1289–1291 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40(15), 1–12 (2012).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Brownstein, M. J., Carpten, J. D. & Smith, J. R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. Biotechniques 20(6), 1004–1010 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Pompanon, F., Bonin, A., Bellemain, E. & Taberlet, P. Genotyping errors: Causes, consequences and solutions. Nat. Rev. Genet. 6(11), 847–859 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Holleley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46(7), 511–517 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Yoshida, K., Hirose, M., Hasegawa, M. & Inoue, E. Mitochondrial DNA analyses of invasive raccoons (Procyon lotor) in the Boso Peninsula, Japan. Mamm. Study 45(1), 1–6 (2020).

    Article 

    Google Scholar 

  • 38.

    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Cullingham, A., Zalewski, A., Bartoszewicz, M., Okarma, H. & Jędrzejewska, E. The genetic structure of raccoon introduced in Central Europe reflects multiple invasion pathways. Biol. Invas. 16, 1611–1625 (2014).

    Article 

    Google Scholar 

  • 40.

    Fischer, M. L. et al. Historical invasion records can be misleading: genetic evidence for multiple introductions of invasive raccoons (Procyon lotor) in Germany. PLoS ONE 10(5), e0125441 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Alda, F. et al. Genetic evidence for multiple introduction events of raccoons (Procyon lotor) in Spain. Biol. Invas. 15, 687–698 (2013).

    Article 

    Google Scholar 

  • 42.

    Biedrzycka, A., Zalewski, A., Bartoszewicz, M., Okarma, H. & Jędrzejewska, E. The genetic structure of raccoon introduced in Central Europe reflects multiple invasion pathways. Biol. Invas. 16(8), 1611–1625 (2014).

    Article 

    Google Scholar 

  • 43.

    Santonastaso, T. T., Dubach, J., Hauver, S. A., Graser, W. H. & Gehrt, S. D. Microsatellite analysis of raccoon (Procyon lotor) population structure across an extensive metropolitan landscape. J. Mammal. 93(2), 447–455 (2012).

    Article 

    Google Scholar 

  • 44.

    Peakall, R. O. D. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6(1), 288–295 (2006).

    Article 

    Google Scholar 

  • 45.

    Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19), 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversity and Fixation Indices (Version 2.9. 3). http://www2.unil.ch/popgen/softwares/fstat.htm (2001).

  • 47.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).

    Article 

    Google Scholar 

  • 49.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Rosenberg, N. A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 4(1), 137–138 (2004).

    Article 

    Google Scholar 

  • 51.

    Ratnayeke, S., Tuskan, G. A. & Pelton, M. R. Genetic relatedness and female spatial organization in a solitary carnivore, the raccoon, Procyon lotor. Mol. Ecol. 11(6), 1115–1124 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Abdelkrim, J., Pascal, M., Calmet, C. & Samadi, S. Importance of assessing population genetic structure before eradication of invasive species: Examples from insular Norway rat populations. Conserv. Biol. 19(5), 1509–1518 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    The language of change