in

Post-fire insect fauna explored by crown fermental traps in forests of the European Russia

  • 1.

    Stephenson, C., Handmer, J. & Robyn, B. Estimating the economic, social and environmental impacts of wildfires in Australia. Environ. Hazards 12, 93–111. https://doi.org/10.1080/17477891.2012.703490 (2013).

    Article 

    Google Scholar 

  • 2.

    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci 371(1696), 20150345. https://doi.org/10.1098/rstb.2015.0345 (2016).

    Article 

    Google Scholar 

  • 3.

    Dusaeva, GKh., Kalmykova, O. G. & Dusaeva, N. V. Fire influence on dynamics of above-ground phytomass in steppe plant communities in the Burtinskaya Steppe (Orenburg State Nature Reserve, Russia). Nat. Conserv. Res. 4(Suppl. 1), 78–92. https://doi.org/10.24189/ncr.2019.050 (2019).

    Article 

    Google Scholar 

  • 4.

    Koltz, A. M. et al. Global change and the importance of fire for the ecology and evolution of insects. Curr. Opin. Insect Sci. 29, 110–116. https://doi.org/10.1016/j.cois.2018.07.015 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Malevsky-Malevich, S. P., Molkentin, E. K., Nadyozhina, E. D. & Shklyarevich, O. B. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Clim. Change 86, 463–474 (2008).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Anisimov, O. A. & Sherstiukov, A. B. Evaluating the effect of environmental factors on permafrost in Russia. Earth’s Cryosphere 20(2), 90–99 (2016) (in Russian).

    Google Scholar 

  • 7.

    Aleinikov, A. A. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: Possible anthropogenic causes and long-term effects. Nat. Conserv. Res. 4(Suppl. 1), 21–34. https://doi.org/10.24189/ncr.2019.033 (2019).

    Article 

    Google Scholar 

  • 8.

    Rozhkov, Yu. F. & Kondakova, MYu. Assessment of the post-fire forest restoration dynamics in the Olekminsky State Nature Reserve (Russia) according to data of Landsat satellite images. Nat. Conserv. Res. 4(Suppl. 1), 1–10. https://doi.org/10.2418/ncr.2019.014 (2019) (in Russian).

    Article 

    Google Scholar 

  • 9.

    Shvetsov, E. G. & Ponomarev, E. I. Postfire effects in Siberian larch stands on multispectral satellite data. Contemp. Probl. Ecol. 13(1), 104–112 (2020).

    Article 

    Google Scholar 

  • 10.

    Shvetsov, E. G., Kukavskaya, E. A. & Buryak, L. V. Satellite monitoring of the state of forest vegetation after fire impacts in the Zabaikal Region. Contemp. Probl. Ecol. 9(6), 702–710 (2016).

    Article 

    Google Scholar 

  • 11

    Kazeev, KSh. et al. Post-fire changes in the biological properties of the brown soils in the Utrish State Nature Reserve (Russia). Nat. Conserv. Res. 4(Suppl. 1), 93–104. https://doi.org/10.24189/ncr.2019.055 (2019).

    Article 

    Google Scholar 

  • 12

    Kopoteva, T. A. & Kuptsova, V. A. Effects of pyrogenic factor on wetlands of Petrovskaya Pad’ (Jewish Autonomous Region, Russia). Nat. Conserv. Res. 4(Suppl. 1), 35–44. https://doi.org/10.24189/ncr.2019.034 (2019).

    Article 

    Google Scholar 

  • 13.

    Lebedinskii, A. A., Noskova, O. S. & Dmitriev, A. I. Post-fire recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere Reserve (Central Volga Region, Russia). Nat. Conserv. Res. 4(Suppl. 1), 45–56. https://doi.org/10.24189/ncr.2019.049 (2019).

    Article 

    Google Scholar 

  • 14.

    Shinkarenko, S. S., Ivanov, N. M. & Berdengalieva, A. N. Spatio-temporal dynamics of burnt areas in federal Protected Areas in the south-east of European Russia. Nat. Conserv. Res. 6(3), 23–44. https://doi.org/10.24189/ncr.2021.035 (2021).

    Article 

    Google Scholar 

  • 15.

    Hoffmann, B. D. Responses of ant communities to experimental fire regimes on rangelands in the Victoria River District of the Northern Territory. Aust. Ecol. 28, 182–195 (2003).

    Article 

    Google Scholar 

  • 16.

    Murphy, S. M., Richards, L. A. & Wimp, G. M. Editorial: Arthropod interactions and responses to disturbance in a changing world. Front. Ecol. Evol. 8, 93. https://doi.org/10.3389/fevo.2020.00093 (2020).

    Article 

    Google Scholar 

  • 17.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849. https://doi.org/10.1890/10-0097.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Gandhi, K. J. K., Spence, J. R., Langor, D. W. & Morgantini, L. E. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Oikos 120, 26–37 (2011).

    Article 

    Google Scholar 

  • 19.

    Buckingham, S., Murphy, N. & Gibb, H. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For. Ecol. Manag. 434, 279–288. https://doi.org/10.1016/j.foreco.2018.12.030 (2019).

    Article 

    Google Scholar 

  • 20.

    Niklasson, M. & Granström, A. Numbers and sizes of fires, long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81, 1484–1499. https://doi.org/10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2 (2000).

    Article 

    Google Scholar 

  • 21.

    Wikars, L.-O. Immediate effects offire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 141, 189–200 (2001).

    Article 

    Google Scholar 

  • 22.

    Egorov, L. V., Podshivalina, V. N. & Kurulenko, D. Yu. Postpyrogenic changes in the fauna of arthropods-herpetobionts on the territory of the Prisursky State Nature Reserve. Long-term processes in natural complexes of reserves in Russia. Velikie Luki, 245–249. (in Russian) (2012).

  • 23.

    Gongalsky, K. B. & Persson, T. Recovery of soil macrofauna after wildfires in boreal forests. Soil Biol. Biochem. 57, 182–191. https://doi.org/10.1016/j.soilbio.2012.07.005 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24

    Ruchin, A. B., Alekseev, S. K. & Khapugin, A. A. Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia). Nat. Conserv. Res. 4(Suppl. 1), 11–20. https://doi.org/10.24189/ncr.2019.009 (2019).

    Article 

    Google Scholar 

  • 25.

    Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8 (2005).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Buddlea, C. M., Langorb, D. W., Pohlb, G. R. & Spencec, J. R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 128, 346–357. https://doi.org/10.1016/j.biocon.2005.10.002 (2006).

    Article 

    Google Scholar 

  • 27.

    Gongalsky, K. B., Wikars, L.-O. & Persson, T. Ground beetle (Coleoptera: Carabidae) responses to a forest wildfire in northern Europe. Russ. Entomol. J. 17(3), 273–282 (2008).

    Google Scholar 

  • 28.

    Gongalsky, K. B. The spatial distribution of large soil invertebrates on burned areas in xerophilous ecosystems of the Black Sea coast of the Caucasus. Arid. Ecosyst. 17(4), 260–266. https://doi.org/10.1134/S2079096111040068 (2011).

    Article 

    Google Scholar 

  • 29.

    Muona, J. & Rutanen, I. The short-term impact offire on the beetle fauna in boreal coniferous forest. Ann. Zool. Fenn. 31, 109–121 (1994).

    Google Scholar 

  • 30.

    Boulanger, Y. & Sirois, L. Postfire succession of saproxylic arthropods, with emphasis on Coleoptera, in the north boreal forest of Quebec. Environ. Entomol. 36(1), 128–141. https://doi.org/10.1603/0046-225X-36.1.128 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Azeria, E. T., Ibarzabal, J. & Hébert, C. Effects of habitat characteristics and interspecific interactions on co-occurrence patterns of saproxylic beetles breeding in tree boles after forest fire: Null model analyses. Oecologia 168, 1123–1135. https://doi.org/10.1007/s00442-011-2180-0 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Atchison, R. A., Hulcr, J. & Lucky, A. Managed fire frequency significantly influences the litter arthropod community in longleaf pine Flatwoods. Environ. Entomol. 47, 575–585. https://doi.org/10.1093/ee/nvy038 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Delettre, Y. R. Fire disturbance of a chironomid (Diptera) community on Heathlands. J. Appl. Ecol. 31(3), 560–570 (1994).

    Article 

    Google Scholar 

  • 35.

    Swengel, A. B. & Swengel, S. R. Benefit of permanent non-fire refugia for Lepidoptera conservation in fire-managed sites. J. Insect Conserv. 11, 263–279. https://doi.org/10.1007/s10841-006-9042-9 (2007).

    Article 

    Google Scholar 

  • 36.

    Sánchez, M. Á. C., Asís, J. D., Gayubo, S. F., Tormos, J. & González, J. A. The effects of wildfire on Spheciformes wasp community structure: The importance of local habitat conditions. J. Insect Conserv. 15(4), 487–503. https://doi.org/10.1007/s10841-010-9322-2 (2010).

    Article 

    Google Scholar 

  • 37.

    Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G. & Sanesia, G. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 263, 262–267. https://doi.org/10.1016/j.foreco.2011.09.034 (2012).

    Article 

    Google Scholar 

  • 38.

    Bogusch, P., Blažej, L., Trýzna, M. & Heneberg, P. Forgotten role of fires in Central European forests: Critical importance of early post-fire successional stages for bees and wasps (Hymenoptera: Aculeata). Eur. J. Forest Res. 134(1), 153–166. https://doi.org/10.1007/s10342-014-0840-4 (2015).

    Article 

    Google Scholar 

  • 39.

    Durska, E. Effects of fire on scuttle flies (Diptera: Phoridae) in a pine forest in Poland. Entomologica Fennica. 26, 181–193 (2015).

    Article 

    Google Scholar 

  • 40.

    Pons, P. Delayed effects of fire and logging on cicada nymph abundance. J. Insect Conserv. 19, 601–606. https://doi.org/10.1007/s10841-015-9781-6 (2015).

    Article 

    Google Scholar 

  • 41.

    Lazarina, M. et al. The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers. Conserv. 26, 115–131. https://doi.org/10.1007/s10531-016-1228-1 (2017).

    Article 

    Google Scholar 

  • 42

    Ruchin, A. B. & Khapugin, A. A. Red data book invertebrates in a protected area of European Russia. Acta Zoologica Academiae Scientiarum Hungaricae. 65(4), 349–370. https://doi.org/10.17109/AZH.65.4.349.2019 (2019).

    Article 

    Google Scholar 

  • 43.

    Khapugin, A. A. & Silaeva, T. B. The arrangement of threatened plants in Mordovia: The role of biodiversity research centers. Écoscience. 27(3), 157–164. https://doi.org/10.1080/11956860.2020.1753293 (2020).

    Article 

    Google Scholar 

  • 44.

    Tereshkin, I. S. & Tereshkina, L. V. Vegetation of the Mordovia Reserve. Successive series of the successions. Proc. Mordovia State Nat. Reserve. 7, 186–287 (2006) (In Russian).

    Google Scholar 

  • 45.

    Bayanov, N. G. Climate changes of the northwest of Mordovia during the period of existence of the Mordovia Reserve according to the meteorological observations in Temnikov. Proc. Mordovia State Nat. Reserve. 14, 212–219 (2015) (In Russian).

    Google Scholar 

  • 46.

    Sieber, A. et al. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 133, 38–51. https://doi.org/10.1016/j.rse.2013.01.021 (2013).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Novenko, E. Y. et al. Vegetation dynamics and fire history at the southern boundary of the forest vegetation zone in European Russia during the middle and late Holocene. Holocene 28(2), 308–322. https://doi.org/10.1177/0959683617721331 (2018).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Kharitonova, A. O. & Kharitonova, T. I. The effect of landscape pattern on the 2010 wildfire spread in the Mordovia State Nature Reserve, Russia. Nat. Conserv. Res. 6(2), 29–41. https://doi.org/10.24189/ncr.2021.022 (2021).

    Article 

    Google Scholar 

  • 49.

    Khapugin, A. A., Vargot, E. V. & Chugunov, G. G. Vegetation recovery in fire-damaged forests: A case study at the southern boundary of the taiga zone. For. Stud. 64, 39–50. https://doi.org/10.1515/fsmu-2016-0003 (2016).

    Article 

    Google Scholar 

  • 50.

    Egorov, L. V., Ruchin, A. B., Semenov, V. B., Semionenkov, O. I. & Semishin, G. B. Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia. ZooKeys. 962, 13–122. https://doi.org/10.3897/zookeys.962.54477 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Bousquet, Y. Litteratura Coleopterologica (1758–1900): A guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys. 583, 1–776. https://doi.org/10.3897/zookeys.583.7084 (2016).

    Article 

    Google Scholar 

  • 52

    Ruchin, A. B., Egorov, L. V., Khapugin, A. A., Vikhrev, N. E. & Esin, M. N. The use of simple crown traps for the insects collection. Nat. Conserv. Res. 5(1), 87–108. https://doi.org/10.24189/ncr.2020.008 (2020).

    Article 

    Google Scholar 

  • 53.

    Ryan, K. C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica. 36, 13–39 (2002).

    Article 

    Google Scholar 

  • 54.

    Turner, M. G., Hargrove, W. W., Gardner, R. H. & Romme, W. H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5, 731–742. https://doi.org/10.2307/3235886 (1994).

    Article 

    Google Scholar 

  • 55.

    BC Wildfire Service. 2020. Wildfire Rank. In: Province of British Columbia. Accessed from: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-response/fire-characteristics/rank.

  • 56.

    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).

    Google Scholar 

  • 57

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 58.

    Magurran, A. E. Ecological Diversity and Its Measurement 179 (Chapman & Hall, 1996).

    Google Scholar 

  • 59.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics soft-ware package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).

    Google Scholar 

  • 60

    Makarkin, V. N. & Ruchin, A. B. New data on Neuroptera and Raphidioptera of Mordovia (Russia). Kavkazskij Entomologiceskij Bulleten. 15(1), 147–157. https://doi.org/10.23885/181433262019151-147157 (2019) (in Russian).

    Article 

    Google Scholar 

  • 61.

    Czechowska, W. A comparative analysis of the structure of Neuropteroidea communities of tree canopies in linden-oak-hornbeam forests, light oak forests, mixed coniferous forests and pine forests. Fragm. Faun. 40, 127–168 (1997).

    Article 

    Google Scholar 

  • 62.

    Volkovich, T. A. Green lacewings (Neuroptera, Chrysopidae) of the «Forest on the Vorskla River» Nature Reserve (Belgorod Province): Fauna and ecology. Entomol. Rev. 81, 884–894 (2001).

    Google Scholar 

  • 63.

    Duelli, P., Obrist, M. K. & Flückiger, P. F. Forest edges are biodiversity hotspots: Also for Neuroptera. Acta Zoologica Hungarica. 48(Suppl. 2), 75–87 (2002).

    Google Scholar 

  • 64

    Ruchin, A. B. & Makarkin, N. V. Neuroptera and raphidioptera in the mordovia state nature reserve. Nat. Conserv. Res. 2(2), 38–46. https://doi.org/10.24189/ncr.2017.001 (2017) (in Russian).

    Article 

    Google Scholar 

  • 65.

    Aspöck, H. & Aspöck, U. Raphidioptera: Kamelhalsfliegen. Ein Überblick zum Einstieg. Entomologica Austriaca. 16, 53–72 (2009).

    Google Scholar 

  • 66.

    Aspöck, H., Aspöck, U. & Rausch, H. Raphidiopteren-Larven als Bodenbewohner (Insecta, Neuropteroidea) (Mit Beschreibungen der Larven von Ornatoraphidia, Parvoraphidia und Superboraphidia). Zeitschrift für Angewandte Zoologie. 62, 361–375 (1975).

    Google Scholar 

  • 67.

    Aspöck, H., Aspöck, U. & Hölzel, H. Die Neuropteren Europas. Eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Vols 1 & 2, Goecke and Evers, Krefeld, pp. 495–455 (1980).

  • 68.

    Kurochkin, A. S. Fauna and bionomy of sap beetles (Coleoptera, Nitidulidae) and kateretid beetles (Coleoptera, Kateretidae) of Krasnosamarskoe forestry farm (Samara Region, Russia): Vestnik of Samara University. Nat. Sci. Ser. 8(58), 120–128 (2007) (in Russian).

    Google Scholar 

  • 69.

    Oude, J. E. Naamlijst van de glanskevers van Nederland en het omliggende gebied (Coleoptera: Nitidulidae and Brachypteridae). Nederlandse Faunistische Mededelinge. 8, 11–32 (1999).

    Google Scholar 

  • 70.

    Alekseev, V. I. & Nikitsky, N. B. Rare and new for the fauna of the Baltic States beetles (Coleoptera) from the Kaliningrad Region. Acta Zoologica Lituanica. 18(4), 254–259 (2008).

    Article 

    Google Scholar 

  • 71.

    Lasoń, A. & Holly, M. Glischrochilus grandis Tournier, 1872: New species of beetle for the Polish fauna and new data on the occurrence of genus Glischrochilus Reitter, 1873 (Cole-optera: Nitidulidae: Cryptarchinae). Acta entomologica silesiana. 23, 1–4 (2015).

    Google Scholar 

  • 72.

    Nikitsky, N. B., Osipov, I. N., Chemeris, M. V., Semenov, V. B. & Gusakov, A. A. The beetles of the Prioksko-Terrasny Biosphere Reserve: Xylobiontes, mycetobiontes and Scarabaeidae. Arch. Zool. Museum Moscow State Univ. XXXVI, 1–197 (1996) (in Russian).

    Google Scholar 

  • 73.

    Tauzin, P. Ethologie et chorologie de Protaetia (Liocola) lugubris Herbst, 1786 sur le territoire français (Coleoptera, Cetoniidae, Cetoniinae, Cetoniini). Cetoniimania. 3(1+2), 4–38 (2006).

    Google Scholar 

  • 74.

    Oleksa, A., Chybicki, I. J., Gawronski, R., Svensson, G. P. & Burczyk, J. Isolation by distance in saproxylic beetles may increase with niche specialization. J. Insects Conserv. 17, 219–233. https://doi.org/10.1007/s10841-012-9499-7 (2013).

    Article 

    Google Scholar 

  • 75.

    Urban, P. & Schulze, W. Ein aktueller Nachweis des Marmorierten Rosenkäfers Protaetia marmorata (Fabricius, 1792) in der Senne (Nordrhein-Westfalen) (Mitteilungen zur Insektenfauna Westfalens XXII). Mitteilungen der Arbeitsgemeinschaft westfälischer Entomologen. 33(1), 15–19 (2017).

    Google Scholar 

  • 76

    Ruchin, A. B., Egorov, L. V. & Khapugin, A. A. Seasonal activity of Coleoptera attracted by fermental crown traps in forest ecosystems of Central Russia. Ecol. Questions. 32(1), 37–53. https://doi.org/10.12775/EQ.2021.004 (2021).

    Article 

    Google Scholar 

  • 77.

    Oleksa, A., Ulrich, W. & Gawronski, R. Occurrence of the marbled rose-chafer (Protaetia lugubris Herbst, Coleoptera, Cetoniidae) in rural avenues in northern Poland. J. Insects Conserv. 10, 241–247. https://doi.org/10.1007/s10841-005-4830-1 (2006).

    Article 

    Google Scholar 

  • 78.

    Nikitsky, N. B. & Vlasov, D. V. Family Scarabaeidae Latreille, 1802. In: Nikitsky N.B. The beetles (Insecta, Coleoptera) of the Moscow oblast. Part. 1. Direct MEDIA. pp. 643–679 (2016) (in Russian).

  • 79.

    Ruchin, A. B., Egorov, L. V., Sazhnev, A. S., Polumordvinov, O. A. & Ishin, R. N. Present distribution of Protaetia fieberi (Kraatz, 1880) (Insecta, Coleoptera, Scarabaeidae) in the European part of Russia. Biharean Biologist. 13(1), 12–16 (2019).

    Google Scholar 

  • 80.

    Tauzin, P. Chorologie et éco-éthologie de Protaetia (Potosia) fieberi Kraatz 1880 en France (Coleoptera, Cetoniinae, Cetoniini). Cetoniimania. 3(4), 115–146 (2007).

    Google Scholar 

  • 81

    Bílý, S. & Mehl, O. Longhorn Beetles (Coleoptera, Cerambycidae) of Fennoscandia and Denmark 200 (Brill, 1989).

    Google Scholar 

  • 82.

    Gutowski, J. M., Ługowoj, J. & Maciejewski, K. H. Leptura thoracica Creutzer, 1799 (Coleoptera: Cerambycidae) in Poland. Wiad. Entomol. 13(3), 157–165 (1994) (in Polish).

    Google Scholar 

  • 83.

    Sama, G. Atlas of the Cerambycidae of Europe and the Mediterranean Area. Vol. 1. Northern, Western, Central and Eastern Europe British Isles and Continental Europe from France (excl. Corsica) to Scandinavia and Urals. Kabourek, Zlín, p. 173 (2002).

  • 84.

    Karpiński, L., Szczepański, W. T., Boldgiv, B. & Walczak, M. New data on the longhorn beetles of Mongolia with particular emphasis on the genus Eodorcadion Breuning, 1947 (Coleoptera, Cerambycidae). ZooKeys. 739, 107–150. https://doi.org/10.3897/zookeys.739.23675 (2018).

    Article 

    Google Scholar 

  • 85.

    Danilevsky, M. L., Ruchin, A. B. & Egorov, L. V. Mass collection of two rare longicorn-species (Coleoptera, Cerambycidae) in Central Russia. Humanity space. 8(9), 1179–1183 (2019).

    Google Scholar 

  • 86

    Ruchin, A. B. & Egorov, L. V. Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia. Russ. Entomol. J. 27(2), 161–177. https://doi.org/10.15298/rusentj.27.2.07 (2018).

    Article 

    Google Scholar 

  • 87.

    Ruchin, A. B., Egorov, L. V. & Khapugin, A. A. Usage of fermental traps for studying the species diversity of Coleoptera. Insects. 12, 407. https://doi.org/10.3390/insects12050407 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Cherepanov, A. I. The Longhorn Beetles of Northern Asia (Prioninae, Disteniinae, Lepturinae, Aseminae) 472 (Nauka Publ, 1979).

    Google Scholar 

  • 89

    Starzyk, J. R. & Partyka, M. Study on the morphology, biology and distribution of Obrium cantharinum (L.) (Col., Cerambycidae). J. Appl. Entomol. 116(1–5), 333–344. https://doi.org/10.1111/j.1439-0418.1993.tb01205.x (1993).

    Article 

    Google Scholar 

  • 90.

    Lindhe, A., Jeppsson, T. & Ehnstrom, B. Longhorn beetles in Sweden changes in distribution and abundance over the last two hundred years. Entomologisk Tidskrift. 131(4), 241–508 (2010).

    Google Scholar 

  • 91.

    Egorov, L. V. & Sysoletina, L. G. On the anthophilic longhorn beetles of the Chuvash ASSR. Terrestrial and aquatic ecosystems, pp. 92–104 (1986) (in Russian).

  • 92.

    Moretti, M. & Barbalat, S. The effects of wildfires on wood-eating beetles in deciduous forests on the southern slope of the Swiss Alps. For. Ecol. Manag. 187(1), 85–103. https://doi.org/10.1016/S0378-1127(03)00314-1 (2004).

    Article 

    Google Scholar 

  • 93.

    Brodie, B. S. et al. Non-lethal monitoring of longicorn beetle communities using generic pheromone lures and occupancy models. Ecol. Ind. 101, 330–340. https://doi.org/10.1016/j.ecolind.2019.01.038 (2019).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Grundel, R., Pavlovic, N. B. & Sulzman, C. L. Habitat use by the endangered Karner blue butterfly in oak woodlands: The influence of canopy cover. Biol. Cons. 85, 47–53 (1998).

    Article 

    Google Scholar 

  • 95.

    Huntzinger, M. Effects of fire management practices on butterfly diversity in the forested western United States. Biol. Cons. 113(1), 1–12. https://doi.org/10.1016/S0006-3207(02)00356-7 (2003).

    Article 

    Google Scholar 

  • 96

    Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G. & Sanesi, G. Influenza degli incendi boschivi sulla biodiversità dell’entomofauna: Un caso di studio in Puglia. Forest 8, 13–21 (2011).

    Article 

    Google Scholar 

  • 97.

    Vogel, J. A., Koford, R. R. & Debinski, D. M. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning. J. Insect Conserv. 14, 663–677. https://doi.org/10.1007/s10841-010-9295-1 (2010).

    Article 

    Google Scholar 

  • 98.

    Swengel, A. B. Effects of fire and hay management on abundance of prairie butterflies. Biol. Cons. 76, 73–85 (1996).

    Article 

    Google Scholar 

  • 99

    Ruchin, A. & Antropov, A. Wasp fauna (Hymenoptera: Bethylidae, Chrysididae, Dryinidae, Tiphiidae, Mutllidae, Scoliidae, Pompilidae, Vespidae, Sphecidae, Crabronidae & Trigonalyidae) of Mordovia State Nature Reserve and its surroundings in Russia. J. Threatened Taxa. 11(2), 13195–13250. https://doi.org/10.11609/jot.4216.11.2.13195-13250 (2019).

    Article 

    Google Scholar 

  • 100.

    Dvořák, L. Social wasps (Hymenoptera: Vespidae) trapped with beer in European forest ecosystems. Acta Mus. Morav. Sci. Biol. (Brno) 92, 181–204 (2007).

    Google Scholar 

  • 101

    Sorvari, J. Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008–2012: A German surprise. Entomologica Fennica. 24(3), 156–164. https://doi.org/10.33338/ef.8983 (2013).

    ADS 
    Article 

    Google Scholar 

  • 102

    Pesson, P. & Louveaux, J. Pollinisation et productions végétales 663 (INRA, 1984).

    Google Scholar 

  • 103.

    Richter, M. R. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45(1), 121–150. https://doi.org/10.1146/annurev.ento.45.1.121 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 104.

    Kasper, M. L., Reeson, A. F., Mackay, D. A. & Austin, A. D. Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Soc. 55, 288–295. https://doi.org/10.1007/s00040-008-1004-7 (2008).

    Article 

    Google Scholar 

  • 105

    Clemente, M. A. et al. Impacts of fire in social wasps community in an area of regenerating brazilian savanna. Sociobiology 66(4), 582–591. https://doi.org/10.13102/sociobiology.v66i4.3590 (2019).

    Article 

    Google Scholar 

  • 106.

    Raveret-Richter, M. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45, 121–150. https://doi.org/10.1146/annurev.ento.45.1.121 (2000).

    Article 

    Google Scholar 

  • 107.

    Jeanne, R. L. The adaptiveness of social wasp nest architecture. Q. Rev. Biol. 50, 267–287 (1975).

    Article 

    Google Scholar 

  • 108

    Wenzel, J. W. Evolution of nest architecture. In The Social Biology of Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, 1991).

    Google Scholar 

  • 109

    Dvořák, L., Dvořáková, K., Oboňa, J. & Ruchin, A. B. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia). Nat. Conserv. Res. 5(4), 65–77. https://doi.org/10.24189/ncr.2020.057 (2020).

    Article 

    Google Scholar 

  • 110

    Krivosheina, N. P. Family Anisopodidae. In Manual of Palaearctic Diptera (eds Papp, L. & Darvas, B.) 239–248 (Science Herald, 1997).

    Google Scholar 

  • 111.

    Rotheray, G. E. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900(1), 50–76 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 112

    Ruchin, A. B., Carr, J. F., Dvořák, L., Esin, M. N. & Khapugin, A. A. Pseudotephritis millepunctata (Hennig, 1939) (Diptera Ulidiidae): New species in European fauna. REDIA. 103, 25–27. https://doi.org/10.19263/REDIA-103.20.05 (2020).

    Article 

    Google Scholar 

  • 113

    Krivosheina, N. P. & Krivosheina, M. G. Saproxylic Diptera (Insecta) of the Lazovsky State Nature Reserve (Russia). Nat. Conserv. Res. 4(3), 78–92. https://doi.org/10.24189/ncr.2019.052 (2019) (in Russian).

    Article 

    Google Scholar 

  • 114.

    Bächli, G. & Rocha Pité, M. T. Family Drosophilidae. P. 186–220. In: Catalogue of Palaearctic Diptera. Vol. 10. Clusiidae–Chloropidae. Akadémiai Kiadó, Budapest (1984).

  • 115.

    Gornostaev, N. G. A review of drosophilid flies (Diptera, Drosophilidae) of Middle Asia and Kazakhstan. Entomologicheskoe Obozrenie. 74(1), 214–223 (1995).

    Google Scholar 

  • 116.

    Gornostaev, N. G. Addition to the fauna of drosophilid flies (Diptera, Drosophilidae) of Russia. Russ. Entomol. J. 6(1–2), 113–118 (1997).

    Google Scholar 

  • 117.

    Gornostaev, N. G. Ecological classification of drosophilid flies (Diptera, Drosophilidae). Entomologicheskoe Obozrenie. 75(3), 698–705 (1996).

    Google Scholar 

  • 118.

    Máca, J. Revision of Palaearctic species of Amiota subg. Phortica (Diptera, Drosophilidae). Acta ent. bohemoslov. 74, 115–130 (1977).

    Google Scholar 

  • 119.

    Bächli, G. & Thunes, K. Leucophenga quinquemaculata Strobl (Diptera, Drosophilidae) from Norway. Fauna Norvegica. 39(2), 81–84 (1992).

    Google Scholar 

  • 120.

    Jonsell, M., Nordlander, G. & Jonsson, M. Colonization patterns of insects breeding in wood-decaying fungi. J. Insect Conserv. 3, 145–161 (1999).

    Article 

    Google Scholar 

  • 121.

    Edwards, F. W. Amiota alboguttata Wahlb. in Dorset (Diptera, Drosophilidae). Entomologist. 69, 218 (1936).

    Google Scholar 

  • 122.

    Kovalev, V. G. Faunistic and ecological material on flies of the genus Lonchaea (Diptera, Lonchaeidae) from Tuva. Entomologicheskoe Obozrenie. 55, 934–945 (1976).

    Google Scholar 

  • 123.

    MacGowan, I. & Rotheray, G. E. British Lonchaeidae. Diptera, Cyclorrhapha, Acalyptratae. Handbooks for the Identification of British Insects, 10 (15). Royal Entomological Society, London (2008).

  • 124.

    Godfrey, A. Lonchaea carpathica Kovalev (Diptera, Lonchaeidae) new to Britain and other Diptera from Cherkley Wood, Leatherhead. Surrey. Dipterists Digest (Second Series) 24, 153–155 (2017) ([in Russian]).

    Google Scholar 

  • 125.

    MacGowan, I., Vikhrev, N. E., Krivosheina, M. G., Ruchin, A. B. & Esin, M. N. New records of Diptera from the Republic of Mordovia. Russ. Far Eastern Entomol. 423, 9–20. https://doi.org/10.25221/fee.423.3 (2021).

    Article 

    Google Scholar 

  • 126.

    Gaponov, S. P. & Panteleeva, NYu. New data of saprobiont larval feeding habits of Brachycera (Diptera) in the Middle Podonye: III: Superfamilies Muscoidea and Oestroidea. Proc. Voronezh State Univ Ser. Chem. Biol. Pharm. 1, 49–56 (2017) (in Russian).

    Google Scholar 

  • 127

    Vikhrev, N. E. & Erofeeva, E. A. Review of the Phaonia pallida group (Diptera: Muscidae). Russ. Entomol. J. 27, 315–322. https://doi.org/10.15298/rusentj.27.3.14 (2018).

    Article 

    Google Scholar 

  • 128.

    Gisondi, S., Rognes, K., Badano, D., Pape, T. & Cerretti, P. The world Polleniidae (Diptera, Oestroidea): Key to genera and checklist of species. ZooKeys. 971, 105–155. https://doi.org/10.3897/zookeys.971.51283 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 129.

    Duelli, P., Obrist, M. K. & Wermelinger, B. Windthrow induces changes of faunistic biodiversity in alpine spruce forests. For. Snow Landsc. Res. 77(1/2), 117–131 (2002).

    Google Scholar 

  • 130.

    Moretti, M., Duelli, P. & Obrist, M. K. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149(2), 312–327. https://doi.org/10.1007/s00442-006-0450-z (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 131.

    Campbell, J. W. et al. Response of beetles (Coleoptera) to repeated applications of prescribed fire and other fuel reduction techniques in the southern Appalachian Mountains. For. Ecol. Manag. 429, 294–299. https://doi.org/10.1016/j.foreco.2018.07.022 (2018).

    Article 

    Google Scholar 

  • 132

    Chen, Z. Z. et al. Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) Under Long and Short Photoperiods. J. Insect Sci. 17(2), 1–9. https://doi.org/10.1093/jisesa/iex005 (2017).

    CAS 
    Article 

    Google Scholar 

  • 133.

    Swengel, A. B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 10, 1141–1169. https://doi.org/10.1023/A:1016683807033 (2001).

    Article 

    Google Scholar 

  • 134

    Gongalsky, K. B. Perfugia as a mechanism for the recovery of soil fauna after ecosystem disturbances. Russ. J. Ecosyst. Ecol. 2(4), 1. https://doi.org/10.21685/2500-0578-2017-4-3 (2017).

    Article 

    Google Scholar 

  • 135.

    Hjältén, J. et al. Forest restoration by burning and gap cutting of voluntary set-asides yield distinct immediate effects on saproxylic beetles. Biodivers. Conserv. 26, 1623–1640. https://doi.org/10.1007/s10531-017-1321-0 (2017).

    Article 

    Google Scholar 

  • 136.

    Gutowski, J. M. et al. Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 461, 117893. https://doi.org/10.1016/j.foreco.2020.117893 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract

    High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR