Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Evolutionary responses of natives to introduced species. Ecol. Lett. 9, 357–374 (2006).
Smith, D. C. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature 336, 66–67 (1988).
Filchak, K. E., Roethele, J. B. & Feder, J. L. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407, 739–742 (2000).
Carroll, S. P., Dingle, H., Famula, T. R. & Fox, C. W. Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. in Microevolution Rate, Pattern, Process (eds. Hendry, A. P. & Kinnison, M. T.) vol. 8 257–272 (Springer Netherlands, 2001).
Nice, C. C., Fordyce, J. A., Shapiro, A. M. & Ffrench-Constant, R. Lack of evidence for reproductive isolation among ecologically specialised lycaenid butterflies. Ecol. Entomol. 27, 702–712 (2002).
Graves, S. D. & Shapiro, A. M. Exotics as host plants of the California butterfly fauna. 110, 413–433 (2003).
Thomas, J. A., Simcox, D. J. & Hovestadt, T. Evidence based conservation of butterflies. J. Insect Conserv. 15, 241–258 (2011).
Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).
Casagrande, R.A. & Dacey, J. E. Monarch butterfly oviposition on swallow-worts (Vincetoxicum spp.). Environ. Entomol. 36, 631–636 (2007).
Davis, S. L. & Cipollini, D. Do mothers always know best? Oviposition mistakes and resulting larval failure of Pieris virginiensis on Alliaria petiolata, a novel, toxic host. Biol. Invasions 16, 1941–1950 (2014).
Janzen, D. H. On ecological fitting. Oikos 45, 308 (1985).
Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).
Thomas, C. D. et al. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41, 892–901 (1987).
Bowers, M. D., Stamp, N. E. & Collinge, S. K. Early stage of host range expansion by a specialist herbivore Euphydryas phaeton. Ecology 73, 526–536 (1992).
Severns, P. M. & Breed, G. A. Behavioral consequences of exotic host plant adoption and the differing roles of male harassment on female movement in two checkerspot butterflies. Behav. Ecol. Sociobiol. 68, 805–814 (2014).
United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; proposed designation of critical habitat for the bay checkerspot butterfly (Euphydryas editha bayensis); proposed rule. (2000).
United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; designation of critical habitat for the Quino checkerspot butterfly (Euphydryas editha quino). (2002).
United States Fish and Wildlife Service. ESA Proposed Listing Taylor’s Checkerspot. Fed. Regist. 77, (2012).
Ehrlich, P. R. & Hanski, I. On the wings of checkerspots: a model system for population biology. Oxford University Press (2004).
Singer, M. C., Ng, D. & Thomas, C. D. Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42, 977–985 (1988).
Singer, M. C. & McBride, C. S. Multitrait, host-associated divergence among sets of butterfly populations: implications for reproductive isolation and ecological speciation. Evol. Int. J. Org. Evol. 64, 921–933 (2009).
Peñuelas, J., Sardans, J., Stefanescu, C., Parella, T. & Filella, I. Lonicera implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J. Chem. Ecol. 32, 1925–1933 (2006).
Nieminen, M., Suomi, J., Nouhuys, S. V., Sauri, P. & Riekkola, M.-L. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 22 (2003).
Bowers, M. D. Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera: Nymphalidae). Evolution 34, 586–600 (1980).
Bowers, M. D. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas Scudder, Nymphalidae). Evolution 35, 367–375 (1981).
Dobler, S., Petschenka, G. & Pankoke, H. Coping with toxic plant compounds–the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72, 1593–1604 (2011).
Bowers, M. D. & Stamp, N. E. Effects of plant age, genotype and herbivory on Plantago performance and chemistry. Ecology 74, 1778–1791 (1993).
Dyer, L. A. & Deane Bowers, M. The importance of sequestered iridoid glycosides as a defense against an ant predator. J. Chem. Ecol. 22, 1527–1539 (1996).
Dunwiddie, P. W. et al. Intertwined fates: Opportunities and challenges in the linked recovery of two rare species. Nat. Areas J. 36, 207–215 (2016).
Stinson, D. Washington State Status Report for the Mazama Pocket Gopher, Streaked Horned Lark, and Taylor’s Checkerspot. Washington Department of Fish and Wildlife (2005).
Cavers, P. B., Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds 47. Plantago lanceolata L. Can. J. Plant Sci. 60, 1269–1282 (1980).
Haan, N. L., Bakker, J. D., Dunwiddie, P. W. & Linders, M. J. Instar-specific effects of host plants on survival of endangered butterfly larvae. Ecol. Entomol. 43, 742–753 (2018).
Danby, W. H. Food plant of Melitaea taylori Edw. Can. Entomol. 22, 121–122 (1890).
Buckingham, D. A., Linders, M., Landa, C., Mullen, L. & LeRoy, C. Oviposition preference of endangered Taylor’s checkerspot butterflies (Euphydryas editha taylori) using native and non-native hosts. Northwest Sci. 90, 491–497 (2016).
Mead, E. W. & Stermitz, F. R. Content of iridoid glycosides in different parts of Castilleja. Phytochemistry 32, 1155–1158 (1993).
Barclay, E., Arnold, M., Anderson, M. J. & Shepherdson, D. Husbandry manual: Taylor’s checkerspot (Euphydryas editha taylori)) (Oregon Zoo, Portland OR, 2009).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Lenth, R. V. Least-Squares Means: The R package lsmeans. J. Stat. Softw. 69, (2016).
Bowers, M. D. & Stamp, N. E. Effect of hostplant genotype and predators on iridoid glycoside content of pupae of a specialist insect herbivore, Junonia coenia (Nymphalidae). Biochem. Syst. 25, 571–580 (1997).
Bowers, M. D. Hostplant suitability and defensive chemistry of the Catalpa sphinx Ceratomia catalpae. J. Chem. Ecol. 29, 2359–2367 (2003).
Oksanen, J. et al. Package ‘vegan’. Community Ecol. Package Version 2, 1–295 (2013).
Yoon, S. & Read, Q. Consequences of exotic host use: Impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia 181, 985–996 (2016).
Cogni, R. Resistance to plant invasion? A native specialist herbivore shows preference for and higher fitness on an introduced host. Biotropica 42, 188–193 (2010).
Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008).
Bowers, M. D., Boockvar, K. & Collinge, S. K. Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a Sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 19, 815–815 (1993).
Singer, M. C. Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia 52, 224–229 (1982).
Parmesan, C., Singer, M. C. & Harris, I. A. N. Absence of adaptive learning from the oviposition foraging behaviour of a checkerspot butterfly. Anim. Behav. 50, 161–175 (1995).
Quintero, C., Lampert, E. C. & Bowers, M. D. Time is of the essence: direct and indirect effects of plant ontogenetic trajectories on higher trophic levels. Ecology 95, 2589–2602 (2014).
Gardner, D. R. & Stermitz, F. R. Host plant utilization and iridoid glycoside sequestration by Euphdryas anicia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 14, 2147–2168 (1988).
Haan, N. L., Bakker, J. D. & Bowers, M. D. Hemiparasites can transmit indirect effects from their host plants to herbivores. Ecology 99, 399–410 (2018).
Haan, N. L. Ecological interactions between Euphydryas editha larvae and their host plants (University of Washington, Seattle, 2017).
Bowers, M. D. Aposematic caterpillars: life-styles of the warningly colored and unpalatable, in Caterpillars: ecological and evolutionary constraints on foraging (eds. Stamp, N.S., and Casey, T.M.). Chapman & Hall (1993).
Theodoratus, D. H. & Bowers, M. D. Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider Lycosa carolinensis. J. Chem. Ecol. 25, 283–295 (1999).
Cirak, C. et al. Phenological changes in the chemical content of wild and greenhouse-grown Hypericum pruinatum: hypericins, hyperforins and phenolic acids. Res Rev J Bot. 4, 37–47 (2015).
Richards, L. A. et al. Synergistic effects of iridoid glycosides on the survival, development and immune response of a specialist caterpillar, Junonia coenia (Nymphalidae). J. Chem. Ecol. 38, 1276–1284 (2012).
Smilanich, A. M., Dyer, L. A., Chambers, J. Q. & Bowers, M. D. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol. Lett. 12, 612–621 (2009).
Hamilton, N.E. & Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw., Code Snippets, 87, 1–17 (2018).
Source: Ecology - nature.com