in

Resilience of spider communities affected by a range of silvicultural treatments in a temperate deciduous forest stand

  • 1.

    Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 259, 698–709. https://doi.org/10.1016/j.foreco.2009.09.023 (2010).

    Article 

    Google Scholar 

  • 2.

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 8. https://doi.org/10.1038/ncomms2328 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132. https://doi.org/10.1111/1365-2745.13651 (2021).

    Article 

    Google Scholar 

  • 4.

    FAO and UNEP. The State of the World’s Forests (SOFO). (FAO and UNEP, 2020).

  • 5.

    Forest Europe. State of Europe’s Forests 2015. Ministerial Conference on the Protection of Forests in Europe. www.foresteurope.org. (Forest Europe, 2015).

  • 6.

    Matthews, J. D. Silvicultural Systems (Oxford University Press, 1991).

    Google Scholar 

  • 7.

    Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. 6, 10. https://doi.org/10.1038/srep23954 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Gustafsson, L., Kouki, J. & Sverdrup-Thygeson, A. Tree retention as a conservation measure in clear-cut forests of northern Europe: A review of ecological consequences. Scand. J. For. Res. 25, 295–308. https://doi.org/10.1080/02827581.2010.497495 (2010).

    Article 

    Google Scholar 

  • 9.

    Raymond, P., Bédard, S., Roy, V., Larouche, C. & Tremblay, S. The irregular shelterwood system: Review, classification, and potential application to forests affected by partial disturbances. J. For. 107, 405–413 (2009).

    Google Scholar 

  • 10.

    Csépányi, P. & Csór, A. Economic assessment of European beech and Turkey oak stands with close-to-nature forest management. Acta Silvat. Lignar. Hung. 13, 9–24 (2017).

    Article 

    Google Scholar 

  • 11.

    Ebeling, A. et al. Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods. PLoS ONE 9, 8. https://doi.org/10.1371/journal.pone.0106529 (2014).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Chen, B. R. & Wise, D. H. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80, 761–772. https://doi.org/10.1890/0012-9658(1999)080[0761:Bulopa]2.0.Co;2 (1999).

    Article 

    Google Scholar 

  • 13.

    Zuev, A. et al. Different groups of ground-dwelling spiders share similar trophic niches in temperate forests. Ecol. Entomol. 45, 1346–1356. https://doi.org/10.1111/een.12918 (2020).

    Article 

    Google Scholar 

  • 14.

    Moulder, B. C. & Reichle, D. E. Significance of Spider Predation in the Energy Dynamics of Forest-Floor Arthropod Communities. Ecol. Monogr. 42, 473–498. https://doi.org/10.2307/1942168 (1972).

    Article 

    Google Scholar 

  • 15.

    Lawrence, K. L. & Wise, D. H. Unexpected indirect effect of spiders on the rate of litter disappearance in a deciduous forest. Pedobiologia 48, 149–157. https://doi.org/10.1016/j.pedobi.2003.11.001 (2004).

    Article 

    Google Scholar 

  • 16.

    Oxbrough, A. & Ziesche, T. Spiders in Forest Ecoystems. In Integrative approaches as an opportunity for the conservation of forest biodiversity (eds Kraus, D. & Krumm, F.) 186–193 (European Forest Institute, 2013).

    Google Scholar 

  • 17.

    Clarke, R. D. & Grant, P. R. An experimental study of the role of spiders as predators in a forest litter community. Part 1. Ecology 49, 1152–1154. https://doi.org/10.2307/1934499 (1968).

    Article 

    Google Scholar 

  • 18.

    Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).

    Article 

    Google Scholar 

  • 19.

    Gallé, R., Szabó, A., Császár, P. & Torma, A. Spider assemblage structure and functional diversity patterns of natural forest steppes and exotic forest plantations. For. Ecol. Manag. 411, 234–239. https://doi.org/10.1016/j.foreco.2018.01.040 (2018).

    Article 

    Google Scholar 

  • 20.

    Buddle, C. M., Langor, D. W., Pohl, G. R. & Spence, J. R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 128, 346–357. https://doi.org/10.1016/j.biocon.2005.10.002 (2006).

    Article 

    Google Scholar 

  • 21.

    Oxbrough, A. G., Gittings, T., O’Halloran, J., Giller, P. S. & Smith, G. F. Structural indicators of spider communities across the forest plantation cycle. For. Ecol. Manag. 212, 171–183. https://doi.org/10.1016/j.foreco.2005.03.040 (2005).

    Article 

    Google Scholar 

  • 22.

    Ingle, K. et al. Winter-active spider fauna is affected by plantation forest type. Env. Entomol. 49, 601–606. https://doi.org/10.1093/ee/nvaa025 (2020).

    Article 

    Google Scholar 

  • 23.

    Munevar, A., Rubio, G. D. & Zurita, G. A. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. For. Ecol. Manag. 424, 536–544. https://doi.org/10.1016/j.foreco.2018.03.025 (2018).

    Article 

    Google Scholar 

  • 24.

    Matveinen-Huju, K. & Koivula, M. Effects of alternative harvesting methods on boreal forest spider assemblages. Can. J. For. Res. 38, 782–794. https://doi.org/10.1139/x07-169 (2008).

    Article 

    Google Scholar 

  • 25.

    Buddle, C. M. & Shorthouse, D. P. Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. Can. Entomol. 140, 437–452 (2008).

    Article 

    Google Scholar 

  • 26.

    Kovács, B., Tinya, F., Németh, C. & Ódor, P. Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment. Ecol. Appl. 30, e02043. https://doi.org/10.1002/eap.2043 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Kovács, B. et al. The Short-Term Effects of Experimental Forestry Treatments on Site Conditions in an Oak-Hornbeam Forest. Forests 9, 406 (2018).

    Article 

    Google Scholar 

  • 28.

    Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44. https://doi.org/10.1093/forestry/77.1.27 (2004).

    Article 

    Google Scholar 

  • 29.

    Tinya, F. et al. Initial understory response to experimental silvicultural treatments in a temperate oak-dominated forest. Eur. J. For. Res. 138, 65–77. https://doi.org/10.1007/s10342-018-1154-8 (2018).

    Article 

    Google Scholar 

  • 30.

    Tinya, F. et al. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 459, 117810. https://doi.org/10.1016/j.foreco.2019.117810 (2020).

    Article 

    Google Scholar 

  • 31.

    Boros, G., Kovács, B. & Ódor, P. Green tree retention enhances negative short-term effects of clear-cutting on enchytraeid assemblages in a temperate forest. Appl. Soil Ecol. 136, 106–115. https://doi.org/10.1016/j.apsoil.2018.12.018 (2019).

    Article 

    Google Scholar 

  • 32.

    Elek, Z. et al. Taxon-specific responses to different forestry treatments in a temperate forest. Sci. Rep. 8, 16990. https://doi.org/10.1038/s41598-018-35159-z (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Connell, J. H. Intermediate-disturbance hypothesis. Science 204, 1345–1345 (1979).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Chen, K. C. & Tso, I. M. Spider diversity on Orchid Island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. Zool. Stud. 43, 598–611 (2004).

    Google Scholar 

  • 35.

    Szinetar, C. & Samu, F. Intensive grazing opens spider assemblage to invasion by disturbance-tolerant species. J. Arachnol. 40, 59–70 (2012).

    Article 

    Google Scholar 

  • 36.

    Pinzon, J., Spence, J. R. & Langor, D. W. Responses of ground-dwelling spiders (Araneae) to variable retention harvesting practices in the boreal forest. For. Ecol. Manag. 266, 42–53. https://doi.org/10.1016/j.foreco.2011.10.045 (2012).

    Article 

    Google Scholar 

  • 37.

    Pinzon, J., Spence, J. R. & Langor, D. W. Effects of prescribed burning and harvesting on ground-dwelling spiders in the Canadian boreal mixedwood forest. Biodivers. Conserv. 22, 1513–1536. https://doi.org/10.1007/s10531-013-0489-1 (2013).

    Article 

    Google Scholar 

  • 38.

    Samu, F. et al. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Commun. Ecol. 11, 129–139. https://doi.org/10.1556/ComEc.11.2010.2.1 (2010).

    Article 

    Google Scholar 

  • 39.

    Morel, L. et al. Spontaneous recovery of functional diversity and rarity of ground-living spiders shed light on the conservation importance of recent woodlands. Biodivers. Conserv. 28, 687–709. https://doi.org/10.1007/s10531-018-01687-3 (2019).

    Article 

    Google Scholar 

  • 40.

    Seedre, M., Felton, A. & Lindbladh, M. What is the impact of continuous cover forestry compared to clearcut forestry on stand-level biodiversity in boreal and temperate forests? A systematic review protocol. Env. Evid. 7, 28. https://doi.org/10.1186/s13750-018-0138-y (2018).

    Article 

    Google Scholar 

  • 41.

    Garcia-Tejero, S., Spence, J. R., O’Halloran, J., Bourassa, S. & Oxbrough, A. Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests. PLoS ONE 13, 16. https://doi.org/10.1371/journal.pone.0206931 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Andrési, D., Bali, L., Tuba, K. & Szinetár, C. Comparative study of ground beetle and ground-dwelling spider assemblages of artificial gap openings. Commun. Ecol. 19, 133–140. https://doi.org/10.1556/168.2018.19.2.5 (2018).

    Article 

    Google Scholar 

  • 43.

    Arganaraz, C. I. et al. Ground-dwelling spiders and understory vascular plants on Fuegian austral forests: Community responses to variable retention management and their association to natural ecosystems. For. Ecol. Manag. 474, 12. https://doi.org/10.1016/j.foreco.2020.118375 (2020).

    Article 

    Google Scholar 

  • 44.

    Dorow, W. H. O., Blick, T., Pauls, S. U. & Schneider, A. Waldbindung ausgewählter Tiergruppen Deutschlands (BfN-Skripten 544, 2019).

    Google Scholar 

  • 45.

    Szmatona-Túri, T., Magos, G., Vona-Túri, D., Gál, B. & Weiperth, A. Review of habitats occupied by Urocoras longispinus: A little-known spider species, and responses to grassland management. Biologia 73, 523–529. https://doi.org/10.2478/s11756-018-0061-2 (2018).

    Article 

    Google Scholar 

  • 46.

    Haraguchi, T. F., Uchida, M., Shibata, Y. & Tayasu, I. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures. Oecologia 171, 935–944. https://doi.org/10.1007/s00442-012-2446-1 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Carvalho, J. C. et al. Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning. J. Biogeogr. 47, 288–300. https://doi.org/10.1111/jbi.13722 (2020).

    Article 

    Google Scholar 

  • 48.

    Samu, F., Horváth, A., Neidert, D., Botos, E. & Szita, É. Metacommunities of spiders in grassland habitat fragments of an agricultural landscape. Basic Appl. Ecol. 31, 92–103. https://doi.org/10.1016/j.baae.2018.07.009 (2018).

    Article 

    Google Scholar 

  • 49.

    Frost, C. M., Didham, R. K., Rand, T. A., Peralta, G. & Tylianakis, J. M. Community-level net spillover of natural enemies from managed to natural forest. Ecology 96, 193–202. https://doi.org/10.1890/14-0696.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 50.

    Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment: “pseudoreplication” in time?. Ecology 67, 929–940. https://doi.org/10.2307/1939815 (1986).

    Article 

    Google Scholar 

  • 51.

    Lemmon, P. E. A new instrument for measuring forest overstory density. J. For. 55, 667–668 (1957).

    Google Scholar 

  • 52.

    Jimenez-Valverde, A. & Lobo, J. M. Establishing reliable spider (Araneae, Araneidae and Thomisidae) assemblage sampling protocols: estimation of species richness, seasonal coverage and contribution of juvenile data to species richness and composition. Acta Oecol. 30, 21–32 (2006).

    ADS 
    Article 

    Google Scholar 

  • 53.

    SAS Institute. JMP Statistics and Graphics Guide, Release 6. (SAS Institute Inc., 2005).

  • 54.

    Smilauer, P. & Leps, J. Multivariate Analysis of Ecological Data Using CANOCO 5 2nd edn. (Cambridge University Press, 2014).

    Book 

    Google Scholar 

  • 55.

    ter Braak, C. J. F. & Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0) (Microcomputer Power, 2012).

    Google Scholar 

  • 56.

    McCune, B. & Mefford, M. PC-ORD. Multivariate Analysis ofEcological Data. Version 6. (MjM software design, 2011).

  • 57.

    Van den Brink, P. J. & Braak, C. J. F. T. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148. https://doi.org/10.1002/etc.5620180207 (1999).

    Article 

    Google Scholar 

  • 58.

    Weiher, E. & Boylen, C. W. Patterns and prediction of α and β diversity of aquatic plants in Adirondack (New York) lakes. Can. J. Bot. 72, 1797–1804. https://doi.org/10.1139/b94-221 (1994).

    Article 

    Google Scholar 

  • 59.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x (2003).

    Article 

    Google Scholar 

  • 60.

    Podani, J. & Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence—absence data. Oikos 120, 1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x (2011).

    Article 

    Google Scholar 

  • Identifying thresholds in the impacts of an invasive groundcover on native vegetation

    Varying impact of neonicotinoid insecticide and acute bee paralysis virus across castes and colonies of black garden ants, Lasius niger (Hymenoptera: Formicidae)