in

Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate change

  • 1.

    Ripple, W. J. et al. World Scientists’ Warning of a Climate Emergency 2021. BioScience. https://doi.org/10.1093/biosci/biab079 (2021).

  • 2.

    Liu, P. R. & Raftery, A. E. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 C target. Commun. Earth Environ. 2, 1–10 (2021).

    Google Scholar 

  • 3.

    IPBES. (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) 56 (IPBES, 2019).

  • 4.

    CBD Secretariat. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets Vol. Document UNEP/CBD/COP/DEC/X/2 (Secretariat of the Convention on Biological Diversity, 2010).

  • 5.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    CAS 

    Google Scholar 

  • 6.

    United State of America. The United States of America Nationally Determined Contribution- Reducing Greenhouse Gases in the United States: A 2030 Emissions Target. 24 (Submitted to the UNFCCC Secretariat under the Paris Agreement; https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf, 2021).

  • 7.

    Nelson, M. D. et al. Defining the United States land base: a technical document supporting the USDA Forest Service 2020 RPA assessment. Gen. Tech. Rep. NRS-191. 191, 1–70 (2020).

    Google Scholar 

  • 8.

    Pörtner, H. O. & et al. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. (IPBES and IPCC, https://doi.org/10.5281/zenodo.4782538, 2021).

  • 9.

    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).

    Google Scholar 

  • 10.

    Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).

    Google Scholar 

  • 11.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Google Scholar 

  • 12.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. 114, 11645–11650 (2017).

    CAS 

    Google Scholar 

  • 13.

    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Google Scholar 

  • 14.

    Sexton, J. O. et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 6, 192–196 (2016).

    Google Scholar 

  • 15.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).

    CAS 

    Google Scholar 

  • 16.

    Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03 (2009).

    Google Scholar 

  • 17.

    Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Chang. 25, 763–787 (2020).

    Google Scholar 

  • 18.

    Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecol. Appl.30, e02039 (2020).

    Google Scholar 

  • 19.

    Ruefenacht, B. et al. Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing 74, 1379–1388 (2008).

    Google Scholar 

  • 20.

    USGS GAP. Protected Areas Database of the United States (PAD-US) 2.1: U.S. Geological Survey data release, https://doi.org/10.5066/P92QM3NT (2020).

  • 21.

    USGS. Gap Analysis Project Species Habitat Maps CONUS_2001. U.S. Geological Survey, https://doi.org/10.5066/F7V122T2 (2018).

  • 22.

    Wilson, B. T., Lister, A. J., Riemann, R. I. & Griffith, D. M. Live tree species basal area of the contiguous United States (2000-2009). (USDA Forest Service, Rocky Mountain Research Station, 2013).

  • 23.

    Wilson, B. T., Woodall, C. & Griffith, D. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Management 8, 1–15 (2013).

    Google Scholar 

  • 24.

    Oleson, K. et al. Technical Descriptioin of Version 4.5 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).

  • 25.

    Buotte, P. C. et al. Near‐future forest vulnerability to drought and fire varies across the western United States. Glob. Chang. Biol. 25, 290–303 (2019).

    Google Scholar 

  • 26.

    Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).

    Google Scholar 

  • 27.

    Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc. Natl Acad. Sci. 95, 14839–14842 (1998).

    CAS 

    Google Scholar 

  • 28.

    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    Google Scholar 

  • 29.

    Lecina‐Diaz, J. et al. The positive carbon stocks–biodiversity relationship in forests: co‐occurrence and drivers across five subclimates. Ecol. Appl. 28, 1481–1493 (2018).

    Google Scholar 

  • 30.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    Google Scholar 

  • 31.

    Glaser, C., Romaniello, C. & Moskowitz, K. Costs and consequences: the real price of livestock grazing on America’s public lands. Tucson, AZ: Center for Biological Diversity (2015).

  • 32.

    Flather, C. H. Species endangerment patterns in the United States. Vol. 241 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and …, 1994).

  • 33.

    Beschta, R. L. et al. Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild, and feral ungulates. Environ. Manag. 51, 474–491 (2013).

    Google Scholar 

  • 34.

    Betts, M. G., Gutiérrez Illán, J., Yang, Z., Shirley, S. M. & Thomas, C. D. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00186 (2019).

  • 35.

    Berner, L. T., Law, B. E., Meddens, A. J. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).

    Google Scholar 

  • 36.

    Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl Acad. Sci. 115, 3663 (2018).

    CAS 

    Google Scholar 

  • 37.

    Ouren, D. S. et al. Environmental effects of off-highway vehicles on Bureau of land management lands: a literature synthesis, annotated bibliographies, extensive bibliographies, and internet resources. US Geol. Survey Open-File Rep. 1353, 225 (2007).

    Google Scholar 

  • 38.

    Talty, M. J., Mott Lacroix, K., Aplet, G. H. & Belote, R. T. Conservation value of national forest roadless areas. Conserv. Sci. Pract. 2, e288 (2020).

    Google Scholar 

  • 39.

    Belote, R. T. & Wilson, M. B. Delineating greater ecosystems around protected areas to guide conservation. Conserv. Sci. Pract. 2, e196 (2020).

    Google Scholar 

  • 40.

    DellaSala, D. A., Karr, J. R. & Olson, D. M. Roadless areas and clean water. J. Soil Water Conserv. 66, 78–84 (2011).

    Google Scholar 

  • 41.

    McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B. & Markusson, N. O. Beyond “net-zero”: a case for separate targets for emissions reduction and negative emissions. Front. Clim. 1, 4 (2019).

    Google Scholar 

  • 42.

    Mildrexler, D. J., Berner, L. T., Law, B. E., Birdsey, R. A. & Moomaw, W. R. Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Chang. 3, https://doi.org/10.3389/ffgc.2020.594274 (2020).

  • 43.

    Hudiburg, T. W., Luyssaert, S., Thornton, P. E. & Law, B. E. Interactive effects of environmental change and management strategies on regional forest carbon emissions. Environ. Sci. Tech. 47, 13132–13140 (2013).

    CAS 

    Google Scholar 

  • 44.

    Noss, R. F. & Daly, K. M. In Connectivity Conservation (eds K. Crooks & M. Sanjayan) 587–619 (Cambridge Univ. Press, 2010).

  • 45.

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Google Scholar 

  • 46.

    Omernik, J. M. Perspectives on the nature and definition of ecological regions. Environ. Manag. 34, S27–S38 (2004).

    Google Scholar 

  • 47.

    Hudiburg, T. et al. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 19, 163–180 (2009).

    Google Scholar 

  • 48.

    Leu, M., Hanser, S. E. & Knick, S. T. The human footprint in the west: a large‐scale analysis of anthropogenic impacts. Ecol. Appl. 18, 1119–1139 (2008).

    Google Scholar 

  • 49.

    Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).

    Google Scholar 

  • 50.

    Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Chang. Biol. 17, 1022–1035 (2011).

    Google Scholar 

  • 51.

    Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Chang. 4, 138–142 (2014).

    CAS 

    Google Scholar 

  • 52.

    McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. 105, 16988–16993 (2008).

    CAS 

    Google Scholar 

  • 53.

    Scott, J. M. et al. Recovery of imperiled species under the Endangered Species Act: the need for a new approach. Front. Ecol. Environ. 3, 383–389 (2005).

    Google Scholar 

  • 54.

    Miller, S. L. et al. Recent population decline of the Marbled Murrelet in the Pacific Northwest. Condor 114, 771–781 (2012).

    Google Scholar 

  • 55.

    Noon, B. R. & McKelvey, K. S. Management of the spotted owl: a case history in conservation biology. Annu. Rev. Ecol. System. 27, 135–162 (1996).

    Google Scholar 

  • 56.

    Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Chang. 4, 2–5 (2014).

    CAS 

    Google Scholar 

  • 57.

    King, T. W. et al. Will Lynx lose their edge? Canada Lynx occupancy in Washington. J. Wildl. Manag. 84, 705–725 (2020).

    Google Scholar 

  • 58.

    Cayan, D. R. et al. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. 107, 21271–21276 (2010).

    CAS 

    Google Scholar 

  • 59.

    Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2018).

    Google Scholar 

  • 60.

    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314 (2020).

    CAS 

    Google Scholar 

  • 61.

    Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western north America. Bull. Am. Meteorol. Soc. 86, 39–49 (2005).

    Google Scholar 

  • 62.

    Cook, B. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth’s Futur. 8, e2019EF001461 (2020).

    Google Scholar 

  • 63.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Google Scholar 

  • 64.

    Johnson, Z. C., Leibowitz, S. G. & Hill, R. A. Revising the index of watershed integrity national maps. Sci. Total Environ. 651, 2615–2630 (2019).

    CAS 

    Google Scholar 

  • 65.

    Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    CAS 

    Google Scholar 

  • 66.

    Buotte, P., Levis, S. & Law, B. E. NACP forest carbon stocks, fluxes, and productivity estimates, Western USA, 1979-2099. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1662 (2019).

  • 67.

    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2012).

    Google Scholar 

  • 68.

    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2015).

    Google Scholar 

  • 69.

    Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).

    Google Scholar 

  • 70.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).

    CAS 

    Google Scholar 

  • 71.

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    Google Scholar 

  • 72.

    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. 114, 2946–2951 (2017).

    CAS 

    Google Scholar 

  • 73.

    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. 114, 4582–4590 (2017).

    CAS 

    Google Scholar 

  • 74.

    Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Management 355, 4–14 (2015).

    Google Scholar 

  • 75.

    Donato, D. C., Campbell, J. L. & Franklin, J. F. Multiple successional pathways and precocity in forest development: can some forests be born complex? J. Veg. Sci. 23, 576–584 (2012).

    Google Scholar 

  • 76.

    Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).

    Google Scholar 

  • 77.

    Harris, N. et al. Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Carbon Balanc. Management 11, 24 (2016).

    CAS 

    Google Scholar 

  • 78.

    Ghimire, B. et al. Large carbon release legacy from bark beetle outbreaks across Western United States. Glob. Chang. Biol. 21, 3087–3101 (2015).

    Google Scholar 

  • 79.

    Mitchell, S. R., Harmon, M. E. & O’connell, K. E. Forest fuel reduction alters fire severity and long‐term carbon storage in three Pacific Northwest ecosystems. Ecol. Appl. 19, 643–655 (2009).

    Google Scholar 

  • 80.

    Rhodes, J. J. & Baker, W. L. Fire probability, fuel treatment effectiveness and ecological tradeoffs in western US public forests. Open For. Sci. J. 1, 1–7 (2008).

    Google Scholar 

  • 81.

    Law, B. E. & Harmon, M. E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Management 2, 73–84 (2011).

    Google Scholar 

  • 82.

    Hudiburg, T. W., Law, B. E., Wirth, C. & Luyssaert, S. Regional carbon dioxide implications of forest bioenergy production. Nat. Clim. Chang. 1, 419–423 (2011).

    CAS 

    Google Scholar 

  • 83.

    Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).

    Google Scholar 

  • 84.

    Law, B. E. Regional analysis of drought and heat impacts on forests: current and future science directions. Glob. Chang. Biol. 20, 3595–3599 (2014).

    Google Scholar 

  • 85.

    Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).

    Google Scholar 

  • 86.

    Kullberg, P. & Moilanen, A. How do recent spatial biodiversity analyses support the convention on biological diversity in the expansion of the global conservation area network? Natureza Conservacao 12, 3–10 (2014).

    Google Scholar 

  • 87.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 88.

    Hijmans, R. J. raster: Geographic Analysis and Modeling. R package version 3.0-12. http://CRAN.R-project.org/package=raster (2019).

  • 89.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-8. https://CRAN.R-project.org/package=rgdal (2019).

  • 90.

    O’Brien, J. gdalUtilities: Wrappers for ‘GDAL’ Utilities Executables. R package version 1. https://CRAN.R-project.org/package=gdalUtilities (2019).

  • 91.

    Dawle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.8. https://CRAN.R-project.org/package=data.table. (2019).

  • 92.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlang New York, 2016).

  • 93.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  • 94.

    Conservation Biology Institute. Protected Areas Database of the United States, CBI Edition Version 2. http://consbio.org/products/projects/pad-us-cbi-edition (2012).

  • 95.

    USDA Forest Service. Forests to Faucets 2.0 [spatial data set]. Retrieved from https://usfs-public.app.box.com/v/Forests2Faucets[Sept 21, 2021] (2019).


  • Source: Ecology - nature.com

    Q&A: Can the world change course on climate?

    The global loss of floristic uniqueness