in

A global database of woody tissue carbon concentrations

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993, https://doi.org/10.1126/science.1201609 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences 116, 4382–4387, https://doi.org/10.1073/pnas.1810512116 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances 2, e1501639, https://doi.org/10.1126/sciadv.1501639 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214, https://doi.org/10.1038/nature16512 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550, https://doi.org/10.1038/s41586-020-2686-x (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006, https://doi.org/10.1038/nature07771 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3, 792–796, https://doi.org/10.1038/nclimate1853 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Köhl, M. et al. Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management 352, 21–34, https://doi.org/10.1016/j.foreco.2015.05.036 (2015).

    Article 

    Google Scholar 

  • Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107 (2010).

    ADS 
    Article 

    Google Scholar 

  • Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters 4, https://doi.org/10.1088/1748-9326/4/3/034009 (2009).

  • Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Science Advances 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aalde, U. et al. in IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 4 (IPPC, 2006).

  • Brown, S. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372, https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. (U.S. Department of Agriculture, Forest Service, Northern Research Station, 2011).

  • Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108 (2011).

    ADS 
    Article 

    Google Scholar 

  • Lamlom, S. H. & Savidge, R. A. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25, 381–388 (2003).

    CAS 
    Article 

    Google Scholar 

  • Van Der Werf, G. R. et al. CO2 emissions from forest loss. Nature Geoscience 2, 737–738, https://doi.org/10.1038/ngeo671 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience 11, 915–920, https://doi.org/10.1038/s41561-018-0246-x (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for Mediterranean Basin plants. Scientific Data 5, 180135, https://doi.org/10.1038/sdata.2018.135 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nature Communications 12, https://doi.org/10.1038/s41467-021-21149-9 (2021).

  • Martin, A. R. & Thomas, S. C. A Reassessment of carbon content in tropical trees. PLoS ONE 6, e23533, https://doi.org/10.1371/journal.pone.0023533 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, A. R., Gezahegn, S. & Thomas, S. C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Canadian Journal of Forest Research 45, 744–757, https://doi.org/10.1139/cjfr-2015-0024 (2015).

    CAS 
    Article 

    Google Scholar 

  • Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352, https://doi.org/10.3390/f3020332 (2012).

    Article 

    Google Scholar 

  • Doraisami, M. et al. GLOWCAD: A global database of woody tissue carbon concentrations fractions. Dryad https://doi.org/10.5061/dryad.18931zcxk (2022)

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).

    ADS 
    Article 

    Google Scholar 

  • Guerrero‐Ramírez, N. R. et al. Global root traits (GRooT) database. Global Ecology and Biogeography 30, 25–37, https://doi.org/10.1111/geb.13179 (2021).

    Article 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist 215, 15–26, https://doi.org/10.1111/nph.14486 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Isaac, M. E. et al. Intraspecific trait variation and coordination: Root and Leaf Economics Spectra in coffee across environmental gradients. Frontiers in Plant Science 8, https://doi.org/10.3389/fpls.2017.01196 (2017).

  • Liu, C. et al. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil 436, 347–364, https://doi.org/10.1007/s11104-019-03934-0 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wang, R. et al. Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits. Functional Ecology 32, 29–39, https://doi.org/10.1111/1365-2435.12983 (2018).

    Article 

    Google Scholar 

  • Minden, V. & Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biology 16, 897–907, https://doi.org/10.1111/plb.12155 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Alameda, D. & Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany 79, 49–57, https://doi.org/10.1016/j.envexpbot.2012.01.004 (2012).

    Article 

    Google Scholar 

  • Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews 24, 164–186, https://doi.org/10.1139/er-2015-0072 (2016).

    Article 

    Google Scholar 

  • Fernández-García, N. et al. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiology 171, 64–75, https://doi.org/10.1016/j.jplph.2013.11.004 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany 59, 139–149, https://doi.org/10.1016/j.envexpbot.2005.11.002 (2007).

    CAS 
    Article 

    Google Scholar 

  • Ineson, P., Cotrufo, M. F., Bol, R., Harkness, D. D. & Blum, H. Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant and Soil 187, 345–350, https://doi.org/10.1007/bf00017099 (1995).

    Article 

    Google Scholar 

  • Pregitzer, K. S. et al. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist 129, 579–585, https://doi.org/10.1111/j.1469-8137.1995.tb03025.x (1995).

    Article 

    Google Scholar 

  • Rohatgi, A. WebPlotDigitizer: Version 4.5. https://automeris.io/WebPlotDigitizer (2021).

  • Harmon, M. E., Fasth, B., Woodall, C. W. & Sexton, J. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management 291, 259–267, https://doi.org/10.1016/j.foreco.2012.11.046 (2013).

    Article 

    Google Scholar 

  • Boyle, B. H. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 1-15, https://tnrs.biendata.org/ (2021).

  • Krankina, O. N., Harmon, M. E. & Griazkin, A. V. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Canadian Journal of Forest Research 29, 20–32, https://doi.org/10.1139/x98-162 (1999).

    Article 

    Google Scholar 

  • Whittaker, R. H. Classification of natural communities. Botanical Review 28, 1–239, https://doi.org/10.1007/BF02860872 (1962).

    Article 

    Google Scholar 

  • Maiti, R. & Rodriguez, H. G. Wood carbon and nitrogen of 37 woody shrubs and trees in Tamaulipan thorn scrub, northeastern Mexico. Pakistan Journal of Botany 51, 979–984 (2019).

    CAS 
    Article 

    Google Scholar 

  • Durkaya, A. B. D., E. Makineci, I. Orhan Aboveground biomass and carbon storage relationship of Turkish Pines. Fresenius Environmental Bulletin 24, 3573–3583 (2015).

    CAS 

    Google Scholar 

  • Tesfaye, M. A., Bravo-Oviedo, A., Bravo, F., Pando, V. & De Aza, C. H. Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest. Journal of Sustainable Forestry 38, 769–790, https://doi.org/10.1080/10549811.2019.1607754 (2019).

    Article 

    Google Scholar 

  • Abdallah, M. A. B., Mata-González, R., Noller, J. S. & Ochoa, C. G. Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA. Agriculture, Ecosystems & Environment 290, 106762, https://doi.org/10.1016/j.agee.2019.106762 (2020).

    CAS 
    Article 

    Google Scholar 

  • Arias, D., Calvo-Alvarado, J., Richter, D. D. B. & Dohrenbusch, A. Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica. Biomass and Bioenergy 35, 1779–1788, https://doi.org/10.1016/j.biombioe.2011.01.009 (2011).

    CAS 
    Article 

    Google Scholar 

  • Assefa, D., Godbold, D. L., Belay, B., Abiyu, A. & Rewald, B. Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest. Ecosystems 21, 482–494, https://doi.org/10.1007/s10021-017-0163-7 (2018).

    CAS 
    Article 

    Google Scholar 

  • Atkin, O. K., Schortemeyer, M., Mcfarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Bardulis, A., Jansons, A., Bardule, A., Zeps, M. & LAzdins, A. Assessment of carbon content in root biomass in Scots Pine and silver birch young stands of Latvia. Baltic Forestry 23, 482–489 (2017).

    Google Scholar 

  • Becker, G. S., Braun, D., Gliniars, R. & Dalitz, H. Relations between wood variables and how they relate to tree size variables of tropical African tree species. Trees 26, 1101–1112, https://doi.org/10.1007/s00468-012-0687-6 (2012).

    Article 

    Google Scholar 

  • Bembenek, M. et al. Carbon content in Juvenile and mature wood of Scots Pine (Pinus sylyestris L.). Baltic Forestry 21, 279–284 (2015).

    Google Scholar 

  • Bert, D. & Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management 222, 279–295, https://doi.org/10.1016/j.foreco.2005.10.030 (2006).

    Article 

    Google Scholar 

  • Borden, K. A., Anglaaere, L. C. N., Adu-Bredu, S. & Isaac, M. E. Root biomass variation of cocoa and implications for carbon stocks in agroforestry systems. Agroforestry Systems 93, 369–381, https://doi.org/10.1007/s10457-017-0122-5 (2019).

    Article 

    Google Scholar 

  • Borden, K. A., Isaac, M. E., Thevathasan, N. V., Gordon, A. M. & Thomas, S. C. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforestry Systems 88, 657–669, https://doi.org/10.1007/s10457-014-9722-5 (2014).

    Article 

    Google Scholar 

  • Bueno-López, S. W., García-Lucas, E. & Caraballo-Rojas, L. R. Allometric equations for total aboveground dry biomass and carbon content of Pinus occidentalis trees. Madera y Bosques 25, https://doi.org/10.21829/myb.2019.2531868 (2019).

  • Bulmer, R. H., Schwendenmann, L. & Lundquist, C. J. Allometric models for estimating aboveground biomass, carbon and nitrogen stocks in temperate Avicennia marina forests. Wetlands 36, 841–848, https://doi.org/10.1007/s13157-016-0793-0 (2016).

    Article 

    Google Scholar 

  • Bütler, R., Patty, L., Le Bayon, R.-C., Guenat, C. & Schlaepfer, R. Log decay of Picea abies in the Swiss Jura Mountains of central Europe. Forest Ecology and Management 242, 791–799, https://doi.org/10.1016/j.foreco.2007.02.017 (2007).

    Article 

    Google Scholar 

  • Cao, Y. & Chen, Y. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering 105, 125–132, https://doi.org/10.1016/j.ecoleng.2017.04.024 (2017).

    Article 

    Google Scholar 

  • Castaño-Santamaría, J. & Bravo, F. Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Annals of Forest Science 69, 663–672, https://doi.org/10.1007/s13595-012-0183-6 (2012).

    Article 

    Google Scholar 

  • Chao, K.-J. et al. Carbon concentration declines with decay class in tropical forest woody debris. Forest Ecology and Management 391, 75–85, https://doi.org/10.1016/j.foreco.2017.01.020 (2017).

    Article 

    Google Scholar 

  • Chen, Y. et al. Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology 30, 295–304, https://doi.org/10.1111/1365-2435.12471 (2016).

    Article 

    Google Scholar 

  • Correia, A. C. et al. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. Forest Systems 19, 418, https://doi.org/10.5424/fs/2010193-9082 (2010).

    Article 

    Google Scholar 

  • Cousins, S. J. M., Battles, J. J., Sanders, J. E. & York, R. A. Decay patterns and carbon density of standing dead trees in California mixed conifer forests. Forest Ecology and Management 353, 136–147, https://doi.org/10.1016/j.foreco.2015.05.030 (2015).

    Article 

    Google Scholar 

  • Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).

    Article 

    Google Scholar 

  • Cruz, P., Bascuñan, A., Velozo, J. & Rodriguez, M. Funciones alométricas de contenido de carbono para quillay, peumo, espino y litre. Bosque (Valdivia) 36, 375–381, https://doi.org/10.4067/s0717-92002015000300005 (2015).

    Article 

    Google Scholar 

  • Currie, W. S. & Nadelhoffer, K. J. The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems 5, 446–460, https://doi.org/10.1007/s10021-002-1153-x (2002).

    CAS 
    Article 

    Google Scholar 

  • Dong, L., Zhang, X. & Li Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in northeast China. Forests 10, 928, https://doi.org/10.3390/f10100928 (2019).

    Article 

    Google Scholar 

  • Dossa, G. G. O., Paudel, E., Cao, K., Schaefer, D. & Harrison, R. D. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species. Scientific Reports 6, 34153, https://doi.org/10.1038/srep34153 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durkaya, B., Durkaya, A., Makineci, E. & Ülküdür, M. Estimation of above-ground biomass and sequestered carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest – Biogeosciences and Forestry 6, 278–284, https://doi.org/10.3832/ifor0899-006 (2013).

    Article 

    Google Scholar 

  • Elias, M. & Potvin, C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research 33, 1039–1045, https://doi.org/10.1139/x03-018 (2003).

    Article 

    Google Scholar 

  • Fang, S., Xue, J. & Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management 85, 672–679, https://doi.org/10.1016/j.jenvman.2006.09.014 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests 43, 197–211, https://doi.org/10.1007/s11056-011-9273-9 (2012).

    Article 

    Google Scholar 

  • Frangi, J. L., Richter, L. L., Barrera, M. D. & Aloggia, M. Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina. Canadian Journal of Forest Research 27, 1095–1102, https://doi.org/10.1139/x97-060 (1997).

    Article 

    Google Scholar 

  • Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).

    Article 

    Google Scholar 

  • Fukatsu, E., Fukuda, Y., Takahashi, M. & Nakada, R. Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch). Journal of Wood Science 54, 247–251, https://doi.org/10.1007/s10086-007-0939-z (2008).

    CAS 
    Article 

    Google Scholar 

  • Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I. & Thiombiano, A. Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso. Heliyon 6, e03805, https://doi.org/10.1016/j.heliyon.2020.e03805 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R. & Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management 187, 197–211, https://doi.org/10.1016/s0378-1127(03)00332-3 (2004).

    Article 

    Google Scholar 

  • Gao, B., Taylor, A. R., Chen, H. Y. H. & Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Forest Ecology and Management 375, 191–199, https://doi.org/10.1016/j.foreco.2016.05.041 (2016).

    Article 

    Google Scholar 

  • Gillerot, L. et al. Inter- and intraspecific variation in mangrove carbon fraction and wood specific gravity in Gazi Bay, Kenya. Ecosphere 9, e02306, https://doi.org/10.1002/ecs2.2306 (2018).

    Article 

    Google Scholar 

  • Gómez-Brandón, M. et al. Physico-chemical and microbiological evidence of exposure effects on Picea abies – coarse woody debris at different stages of decay. Forest Ecology and Management 391, 376–389, https://doi.org/10.1016/j.foreco.2017.02.033 (2017).

    Article 

    Google Scholar 

  • Guner, S. T. & Comez, A. Biomass equations and changes in carbon stock in afforested Black Pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin 26, 2368–2379 (2017).

    CAS 

    Google Scholar 

  • Guo, J., Chen, G., Xie, J., Yang, Z. & Yang, Y. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China. Annals of Forest Science 71, 585–594, https://doi.org/10.1007/s13595-014-0366-4 (2014).

    Article 

    Google Scholar 

  • Hanpattanakit, P., Chidthaisong, A., Sanwangsri, M. & Lichaikul, N. Improving allometric equations to estimate biomass and carbon in secondary dry dipterocarp forest. Singapore SG 18, 208–211 (2016).

    Google Scholar 

  • Herrero De Aza, C., Turrión, M. B., Pando, V. & Bravo, F. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science 68, 1067–1076, https://doi.org/10.1007/s13595-011-0122-y (2011).

    Article 

    Google Scholar 

  • Huet, S., Forgeard, F. O. & Nys, C. Above- and belowground distribution of dry matter and carbon biomass of Atlantic beech (Fagus sylvatica L.) in a time sequence. Annals of Forest Science 61, 683–694, https://doi.org/10.1051/forest:2004063 (2004).

    CAS 
    Article 

    Google Scholar 

  • Jacobs, D. F., Selig, M. F. & Severeid, L. R. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight. Forest Ecology and Management 258, 288–294, https://doi.org/10.1016/j.foreco.2009.04.014 (2009).

    Article 

    Google Scholar 

  • Janssens, I. A. et al. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of forest science 56, 81–90, https://doi.org/10.1051/forest:19990201 (1999).

    Article 

    Google Scholar 

  • Jiménez Pérez, J., Treviño Garza, E. J. & Yerena Yamallel, J. I. Concentración de carbono en especies del bosque de pino-encino en la Sierra Madre Oriental. Revista mexicana de ciencias forestales 4, 50–61 (2013).

    Article 

    Google Scholar 

  • Jomura, M. et al. Biotic and abiotic factors controlling respiration rates of above- and belowground woody debris of Fagus crenata and Quercus crispula in Japan. PLOS ONE 10, e0145113, https://doi.org/10.1371/journal.pone.0145113 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, D. & O’Hara, K. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 9, 430, https://doi.org/10.3390/f9070430 (2018).

    Article 

    Google Scholar 

  • Jones, D. A. & O’Hara, K. L. Carbon density in managed coast redwood stands: implications for forest carbon estimation. Forestry 85, 99–110, https://doi.org/10.1093/forestry/cpr063 (2012).

    Article 

    Google Scholar 

  • Jones, D. A. & O’Hara, K. L. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiology 36, 1177–1189, https://doi.org/10.1093/treephys/tpw051 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Joosten, R. & Schulte, A. Possible effects of altered growth behaviour of Norway Spruce (Picea abies) on carbon accounting. Climatic Change 55, 115–129, https://doi.org/10.1023/a:1020227806137 (2002).

    CAS 
    Article 

    Google Scholar 

  • Joosten, R., Schumacher, J., Wirth, C. & Schulte, A. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management 189, 87–96, https://doi.org/10.1016/j.foreco.2003.07.037 (2004).

    Article 

    Google Scholar 

  • Kim, C., Yoo, B., Jung, S. & Lee, K. Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea. iForest – Biogeosciences and Forestry 10, 483–490, https://doi.org/10.3832/ifor2164-010 (2017).

    Article 

    Google Scholar 

  • Kort, J. & Turnock, R. Carbon reservoirs and biomass in Canadian prairie shelterbelts. Agroforestry Systems 44, 175-186, https://doi.org/10.1023/a:1006226006785 (1998).

  • Köster, K., Metslaid, M., Engelhart, J. & Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Forest Ecology and Management 354, 35–42, https://doi.org/10.1016/j.foreco.2015.06.039 (2015).

    Article 

    Google Scholar 

  • Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. Forest Ecology and Management 173, 213–225, https://doi.org/10.1016/s0378-1127(02)00002-6 (2003).

    Article 

    Google Scholar 

  • Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management 93, 161–169, https://doi.org/10.1016/s0378-1127(96)03916-3 (1997).

    Article 

    Google Scholar 

  • Laiho, R. & Prescott, C. E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research 29, 1592–1603, https://doi.org/10.1139/x99-132 (1999).

    Article 

    Google Scholar 

  • Lambert, R. L., Lang, G. E. & Reiners, W. A. Loss of mass and chemical change in decaying boles of a subalpine Balsam Fir forest. Ecology 61, 1460–1473, https://doi.org/10.2307/1939054 (1980).

    Article 

    Google Scholar 

  • Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2010).

    Article 

    Google Scholar 

  • Li, X. et al. Biomass and carbon storage in an age-sequence of Korean Pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology 54, 33–42, https://doi.org/10.1007/s12374-010-9140-9 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lombardi, F. et al. Investigating biochemical processes to assess deadwood decay of Beech and Silver Fir in Mediterranean mountain forests. Annals of Forest Science 70, 101–111, https://doi.org/10.1007/s13595-012-0230-3 (2013).

    Article 

    Google Scholar 

  • Lutter, R., Tullus, A., Kanal, A., Tullus, T. & Tullus, H. The impact of former land-use type to above- and below-ground C and N pools in short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions. Forest Ecology and Management 378, 79–90, https://doi.org/10.1016/j.foreco.2016.07.021 (2016).

    Article 

    Google Scholar 

  • Mahmood, H. et al. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill Zone of Bangladesh. Journal of Forestry Research 31, 1235–1245, https://doi.org/10.1007/s11676-019-00881-5 (2020).

    CAS 
    Article 

    Google Scholar 

  • Maiti, R., Gonzalez Rodriguez, H. & Kumari, A. Wood density of ten native trees and shrubs and its possible relation with a few wood chemical compositions. American Journal of Plant Sciences 07, 1192–1197, https://doi.org/10.4236/ajps.2016.78114 (2016).

    CAS 
    Article 

    Google Scholar 

  • Mäkinen, H., Hynynen, J., Siitonen, J. & Sievänen, R. Predicting The decomposition of Scots Pine, Norway Spruce, and Birch stems in Finland. Ecological Applications 16, 1865–1879, https://doi.org/10.1890/1051-0761(2006)016[1865:ptdosp]2.0.co;2 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Manuella, S. et al. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research 43, 785–798, https://doi.org/10.1139/cjfr-2013-0086 (2013).

    CAS 
    Article 

    Google Scholar 

  • Martin, A. R. & Thomas, S. C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiology 33, 1338–1353, https://doi.org/10.1093/treephys/tpt085 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Martin, A. R., Thomas, S. C. & Zhao, Y. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees. AoB PLANTS 5, plt039–plt039, https://doi.org/10.1093/aobpla/plt039 (2013).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).

    CAS 
    Article 

    Google Scholar 

  • Moreira, A. B., Gregoire, T. G. & Do Couto, H. T. Z. Wood density and carbon concentration of coarse woody debris in native forests, Brazil. Forest Ecosystems 6, https://doi.org/10.1186/s40663-019-0177-z (2019).

  • Morhart, C., Sheppard, J. P., Schuler, J. K. & Spiecker, H. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study. Forest Ecosystems 3, https://doi.org/10.1186/s40663-016-0063-x (2016).

  • Northup, B. K., Zitzer, S. F., Archer, S., Mcmurtry, C. R. & Boutton, T. W. Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. Journal of Arid Environments 62, 23–43, https://doi.org/10.1016/j.jaridenv.2004.09.019 (2005).

    ADS 
    Article 

    Google Scholar 

  • Palviainen, M. & Finér, L. Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management 358, 1–11, https://doi.org/10.1016/j.foreco.2015.08.036 (2015).

    Article 

    Google Scholar 

  • Peri, P. L., Gargaglione, V., Martínez Pastur, G. & Lencinas, M. V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. Forest Ecology and Management 260, 229–237, https://doi.org/10.1016/j.foreco.2010.04.027 (2010).

    Article 

    Google Scholar 

  • Pompa-García, M. & Jurado, E. Carbon concentration in structures of Arctostaphylos pungens HBK: an alternative CO2 sink in forests. Phyton 84, 385-389 (2016).

  • Pompa-García, M., Sigala-Rodríguez, J., Jurado, E. & Flores, J. Tissue carbon concentration of 175 Mexican forest species. iForest – Biogeosciences and Forestry 10, 754–758, https://doi.org/10.3832/ifor2421-010 (2017).

    Article 

    Google Scholar 

  • Pompa-García, M. & Yerena-Yamalliel, J. I. Concentration of carbon in Pinus cembroides Zucc: potential source of global warming mitigation. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20, 169–175, https://doi.org/10.5154/r.rchscfa.2014.04.014 (2014).

    Article 

    Google Scholar 

  • Preston, C. M., Trofymow, J. A. & Flanagan, L. B. Decomposition, δ13C, and the “lignin paradox”. Canadian Journal of Soil Science 86, 235–245, https://doi.org/10.4141/s05-090 (2006).

    CAS 
    Article 

    Google Scholar 

  • Preston, C. M., Trofymow, J. A. & Nault, J. R. Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Canadian Journal of Forest Research 42, 1153-1167 (2012).

    CAS 
    Article 

    Google Scholar 

  • Preston, C. M., Trofymow, J. A., Niu, J. & Fyfe, C. A. PMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. Forest Ecology and Management 111, 51–68, https://doi.org/10.1016/s0378-1127(98)00307-7 (1998).

    Article 

    Google Scholar 

  • Rana, R., Langenfeld-Heyser, R., Finkeldey, R. & Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology 44, 225–242, https://doi.org/10.1007/s00226-009-0281-2 (2010).

    CAS 
    Article 

    Google Scholar 

  • Ray, R., Majumder, N., Chowdhury, C. & Jana, T. K. Wood chemistry and density: an analog for response to the change of carbon sequestration in mangroves. Carbohydrate Polymers 90, 102–108, https://doi.org/10.1016/j.carbpol.2012.05.001 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rodrigues, D. P., Hamacher, C., Estrada, G. C. D. & Soares, M. L. G. Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquatic Botany 120, 346–351, https://doi.org/10.1016/j.aquabot.2014.10.004 (2015).

    CAS 
    Article 

    Google Scholar 

  • Sakai, Y., Ugawa, S., Ishizuka, S., Takahashi, M. & Takenaka, C. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica. Soil Science and Plant Nutrition 58, 526–537, https://doi.org/10.1080/00380768.2012.710526 (2012).

    CAS 
    Article 

    Google Scholar 

  • Sandström, F., Petersson, H., Kruys, N. & Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Forest Ecology and Management 243, 19–27, https://doi.org/10.1016/j.foreco.2007.01.081 (2007).

    Article 

    Google Scholar 

  • Sanquetta, M. N. I., Sanquetta, C. R., Mognon, F., Corte, A. P. D. & Maas, G. C. B. Wood density and carbon content in young teak individuals from Pará, Brazil. Científica 44, 608, https://doi.org/10.15361/1984-5529.2016v44n4p608-614 (2016).

    Article 

    Google Scholar 

  • Schwendenmann, L. & Mitchell, N. Carbon accumulation by native trees and soils in an urban park, Auckland. New Zealand Journal of Ecology 38(20), 213–220 (2014).

  • Setälä, H., Marshall, V. G. & Trofymow, J. A. Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology 2, 227–242, https://doi.org/10.1016/0929-1393(95)00053-9 (1995).

    Article 

    Google Scholar 

  • Sohrabi, H., Bakhtiarvand-Bakhtiari, S. & Ahmadi, K. Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran. Journal of Arid Land 8, 138–145, https://doi.org/10.1007/s40333-015-0087-z (2016).

    Article 

    Google Scholar 

  • Telmo, C., Lousada, J. & Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology 101, 3808–3815, https://doi.org/10.1016/j.biortech.2010.01.021 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thomas, A. L. et al. Carbon and nitrogen accumulation within four black walnut alley cropping sites across Missouri and Arkansas, USA. Agroforestry Systems 94, 1625–1638, https://doi.org/10.1007/s10457-019-00471-8 (2020).

    Article 

    Google Scholar 

  • Thomas, S. C. & Malczewski, G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. Journal of Environmental Management 85, 659–662, https://doi.org/10.1016/j.jenvman.2006.04.022 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tolunay, D. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research 24, 394–402, https://doi.org/10.1080/02827580903164471 (2009).

    Article 

    Google Scholar 

  • Tramoy, R., Sebilo, M., Nguyen Tu, T. T. & Schnyder, J. Carbon and nitrogen dynamics in decaying wood: paleoenvironmental implications. Environmental Chemistry 14, 9, https://doi.org/10.1071/en16049 (2017).

    CAS 
    Article 

    Google Scholar 

  • Van Geffen, K. G., Poorter, L., Sass-Klaassen, U., Van Logtestijn, R. S. P. & Cornelissen, J. H. C. The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology 91, 3686–3697, https://doi.org/10.1890/09-2224.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Wang, G. et al. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. Forest Ecology and Management 329, 255–263, https://doi.org/10.1016/j.foreco.2014.06.023 (2014).

    Article 

    Google Scholar 

  • Wang, X. W., Weng, Y. H., Liu, G. F., Krasowski, M. J. & Yang, C. P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. Forest Ecology and Management 358, 344–352, https://doi.org/10.1016/j.foreco.2015.08.029 (2015).

    Article 

    Google Scholar 

  • Watzlawick, L. F. et al. Teores de carbono em espécies da floresta ombrófila mista e efeito do grupo ecológico. Cerne 20, 613–620, https://doi.org/10.1590/01047760201420041492 (2014).

    Article 

    Google Scholar 

  • Weber, J. C. et al. Variation in growth, wood density and carbon concentration in five tree and shrub species in Niger. New Forests 49, 35–51, https://doi.org/10.1007/s11056-017-9603-7 (2018).

    Article 

    Google Scholar 

  • Weggler, K., Dobbertin, M., Jüngling, E., Kaufmann, E. & Thürig, E. Dead wood volume to dead wood carbon: the issue of conversion factors. European Journal of Forest Research 131, 1423–1438, https://doi.org/10.1007/s10342-012-0610-0 (2012).

    Article 

    Google Scholar 

  • Widagdo, F. R. A., Xie, L., Dong, L. & Li, F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China. Global Ecology and Conservation 23, e01111, https://doi.org/10.1016/j.gecco.2020.e01111 (2020).

    Article 

    Google Scholar 

  • Wu, H. et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area. Scientific Reports 7, https://doi.org/10.1038/s41598-017-05306-z (2017).

  • Xing, Z. et al. Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiology 25, 1207–1217, https://doi.org/10.1093/treephys/25.9.1207 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Yang, F.-F. et al. Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Forest Ecology and Management 259, 1666–1672, https://doi.org/10.1016/j.foreco.2010.01.046 (2010).

    Article 

    Google Scholar 

  • Yeboah, D., Burton, A. J., Storer, A. J. & Opuni-Frimpong, E. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45, 35–52, https://doi.org/10.1007/s11056-013-9390-8 (2014).

    Article 

    Google Scholar 

  • Ying, J., Weng, Y., Oswald, B. P. & Zhang, H. Variation in carbon concentrations and allocations among Larix olgensis populations growing in three field environments. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0877-0 (2019).

  • Yuan, J., Cheng, F., Zhu, X., Li, J. & Zhang, S. Respiration of downed logs in pine and oak forests in the Qinling Mountains, China. Soil Biology and Biochemistry 127, 1–9, https://doi.org/10.1016/j.soilbio.2018.09.012 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zabek, L. M. & Prescott, C. E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia. Forest Ecology and Management 223, 291–302, https://doi.org/10.1016/j.foreco.2005.11.009 (2006).

    Article 

    Google Scholar 

  • Zhang, H., Jiang, Y., Song, M., He, J. & Guan, D. Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris. Scientific Reports 10, https://doi.org/10.1038/s41598-020-61476-3 (2020).

  • Zhang, Q., Wang, C., Wang, X. & Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management 258, 722–727, https://doi.org/10.1016/j.foreco.2009.05.009 (2009).

    Article 

    Google Scholar 

  • Zheng, H. et al. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management 255, 1113–1121, https://doi.org/10.1016/j.foreco.2007.10.015 (2008).

    Article 

    Google Scholar 

  • Zhou, L. et al. Tissue-specific carbon concentration, carbon stock, and distribution in Cunninghamia lanceolata (Lamb.) Hook plantations at various developmental stages in subtropical China. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0851-x (2019).

  • Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92, https://doi.org/10.1038/nature12872 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Muscarella, R. et al. The global abundance of tree palms. Global Ecology and Biogeography 29, 1495–1514, https://doi.org/10.1111/geb.13123 (2020).

    Article 

    Google Scholar 

  • Du, H. et al. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 1458–1471 (2018).

    ADS 
    Article 

    Google Scholar 

  • Iwashita, D. K., Litton, C. M. & Giardina, C. P. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest. Forest Ecology and Management 291, 336–343, https://doi.org/10.1016/j.foreco.2012.11.043 (2013).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).

  • Wikström, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 2211–2220, https://doi.org/10.1098/rspb.2001.1782 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gastauer, M. & Meira Neto, J. A. A. Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Botanica Brasilica 31, 191–198, https://doi.org/10.1590/0102-33062016abb0306 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon impacts

    Comparative screening the life-time composition and crystallinity variation in gilthead seabream otoliths Sparus aurata from different marine environments