United Nations. World Urbanization Prospects: The 2018 revision. (Department of Economic and Social Affairs, Population Division, United Nations, 2018).
Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
Google Scholar
McPhearson, T. et al. Advancing urban ecology toward a science of cities. Bioscience 66, 198–212 (2016).
Google Scholar
Dodman, D. et al. Cities, settlements and key infrastructure. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 997–1040 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2022).
Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).
Google Scholar
Grabowski, Z. J., McPhearson, T., Matsler, A. M., Groffman, P. & Pickett, S. T. A. What is green infrastructure? A study of definitions in US city planning. Front. Ecol. Environ. 20, 152–160 (2022).
Google Scholar
Childers, D. L. et al. Urban ecological infrastructure: An inclusive concept for the non-built urban environment. Elementa 7, 1–14 (2019).
Gómez-Baggethun, E. et al. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds. Elmqvist, T. et al.) 175–251 (Springer, Netherlands, 2013).
Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Google Scholar
Burkhard, B. & Maes, J. Mapping Ecosystem Services (Pensoft Publishers, Sofia, 2017).
Eviner, V. T. & Chapin, F. S. Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34, 455–485 (2003).
Google Scholar
Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).
Google Scholar
Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).
Google Scholar
Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 14, 1125–1140 (2008).
Google Scholar
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Google Scholar
Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol. Evol. 7, 831–844 (2017).
Google Scholar
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Google Scholar
Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).
Google Scholar
Andersson, E. et al. What are the traits of a social-ecological system: Towards a framework in support of urban sustainability. npj Urban Sustain. 1, 14 (2021).
Google Scholar
Pickett, S. T. A. et al. Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).
Google Scholar
McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).
Google Scholar
Zhou, W., Pickett, S. T. A. & McPhearson, T. Conceptual frameworks facilitate integration for transdisciplinary urban science. npj Urban Sustain. 1, 1 (2021).
Google Scholar
Andersson, E. et al. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 12, 157–164 (2015).
Google Scholar
Pinho, P. et al. Research agenda on biodiversity and ecosystem functions and services in European cities. Basic Appl. Ecol. 53, 124–133 (2021).
Google Scholar
Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).
Google Scholar
Avolio, M. L., Swan, C., Pataki, D. E. & Jenerette, G. D. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos 130, 1849–1864 (2021).
Google Scholar
Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).
Google Scholar
Woodward, F. I. & Diament, A. D. Functional approaches to predicting the ecological effects of global change. Funct. Ecol. 5, 212 (1991).
Google Scholar
Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).
Google Scholar
Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).
Google Scholar
Grimm, N. B., Grove, J. M., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems. Bioscience 50, 571–584 (2000).
Google Scholar
Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).
Google Scholar
Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).
Google Scholar
Cavender-Bares, J. et al. Horticultural availability and homeowner preferences drive plant diversity and composition in urban yards. Ecol. Appl. 30, 1–16 (2020).
Google Scholar
Pearse, W. D. et al. Homogenization of plant diversity, composition, and structure in North American urban yards. Ecosphere 9, e02105 (2018).
Google Scholar
Cubino, J. P. et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 34, 63–77 (2019).
Google Scholar
Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).
Sukopp, H. Human-caused impact on preserved vegetation. Landsc. Urban Plan. 68, 347–355 (2004).
Google Scholar
Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).
Google Scholar
Williams, N. S. G., Hahs, A. K. & Vesk, P. A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 17, 78–86 (2015).
Google Scholar
Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
Google Scholar
Jochner, S. & Menzel, A. Urban phenological studies—past, present, future. Environ. Pollut. 203, 250–261 (2015).
Google Scholar
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
Google Scholar
de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).
Google Scholar
Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).
Google Scholar
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).
Google Scholar
Martin, C. A., Warren, P. S. & Kinzig, A. P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 69, 355–368 (2004).
Google Scholar
Kinzig, A. P., Warren, P., Martin, C., Hope, D. & Katti, M. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc. 10, 23 (2005).
Google Scholar
Stephenson, J. The cultural values model: An integrated approach to values in landscapes. Landsc. Urban Plan. 84, 127–139 (2008).
Google Scholar
Andersson, E., Barthel, S. & Ahrné, K. Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 17, 1267–1278 (2007).
Google Scholar
Fraser, E. D. G. & Kenney, W. A. Cultural background and landscape history as factors affecting perceptions of the urban forest. J. Arboric. 26, 106–113 (2000).
Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 100, 8788–8792 (2003).
Google Scholar
Avolio, M. L. et al. Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosyst. 18, 73–86 (2015).
Google Scholar
Körmöndi, B., Tempfli, J., Kocsis, J. B., Adams, J. & Szkordilisz, F. E. The secret ingredient—The role of governance in green infrastructure development: Through the examples of European cities. IOP Conf. Ser. Earth Environ. Sci. 323, (2019).
Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).
Google Scholar
Lack, W. H. The Book of Palms (Taschen-Bibliotheca Universalis, 2015).
Grilo, F. et al. Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 724, 138182 (2020).
Google Scholar
Prasifka, J. R. et al. Using nectar-related traits to enhance crop–pollinator interactions. Front. Plant Sci. 9, 1–8 (2018).
Google Scholar
Veerkamp, C. J. et al. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52, 101367 (2021).
Google Scholar
Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).
Google Scholar
Farmer, J. Trees in Paradise: A California History (WW Norton & Company, 2013).
Goodness, J., Andersson, E., Anderson, P. M. L. & Elmqvist, T. Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management. Ecol. Indic. 70, 597–605 (2016).
Google Scholar
Masterson, V. A. et al. The contribution of sense of place to social-ecological systems research: A review and research agenda. Ecol. Soc. 22, 49 (2017).
Google Scholar
Masterson, V. A., Enqvist, J. P., Stedman, R. C. & Tengö, M. Sense of place in social-ecological systems: From theory to empirics. Sustain. Sci. 14, 555–564 (2019).
Google Scholar
Mukherjee, A. & Agrawal, M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. Ecotoxicol. Environ. Saf. 152, 42–54 (2018).
Google Scholar
Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J. & Naryan, D. Air pollution tolerance index of plants. J. Environ. Manage. 32, 45–55 (1991).
Google Scholar
Mukherjee, A. & Agrawal, M. Pollution response score of tree species in relation to ambient air quality in an urban area. Bull. Environ. Contam. Toxicol. 96, 197–202 (2016).
Google Scholar
Barwise, Y. & Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. npj Clim. Atmos. Sci. 3, 12 (2020).
Google Scholar
Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550 (2016).
Google Scholar
Tomson, M. et al. Green infrastructure for air quality improvement in street canyons. Environ. Int. 146, 106288 (2021).
Google Scholar
Source: Ecology - nature.com