in

Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.

  • Raguso, R. A. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39, 549–569 (2008).

    Google Scholar 

  • Knudsen, J. T., Eriksson, R., Gershenzon, J. & Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).

    Google Scholar 

  • Hadacek, F. & Weber, M. Club-shaped organs as additional osmophores within the Sauromatum inflorescence: odour analysis, ultrastructural changes and pollination aspects. Plant Biol. 4, 367–383 (2002).

    CAS 

    Google Scholar 

  • Schlumpberger, B. O. & Raguso, R. A. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117, 801–814 (2008).

    Google Scholar 

  • Gfrerer, E. et al. Floral scents of a deceptive plant are hyperdiverse and under population-specific phenotypic selection. Front. Plant Sci. 12, https://doi.org/10.3389/fpls.2021.719092 (2021).

  • Primante, C. & Dötterl, S. A syrphid fly uses olfactory cues to find a non-yellow flower. J. Chem. Ecol. 36, 1207–1210 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Theis, N. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J. Chem. Ecol. 32, 917–927 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. & Schiestl, F. The role of volatiles in plant communication. Plant J. 100, 892–907 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiestl, F. P. et al. Orchid pollination by sexual swindle. Nature 399, 421–422 (1999).

    CAS 

    Google Scholar 

  • Schäffler, I. et al. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci. Rep. 5, 1–11 (2015).

    Google Scholar 

  • Castañeda-Zárate, M., Johnson, S. D. & van der Niet, T. Food reward chemistry explains a novel pollinator shift and vestigialization of long floral spurs in an orchid. Curr. Biol. 31, 238–246 (2021).

    PubMed 

    Google Scholar 

  • Dötterl, S., David, A., Boland, W., Silberbauer-Gottsberger, I. & Gottsberger, G. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J. Chem. Ecol. 38, 1539–1543 (2012).

    PubMed 

    Google Scholar 

  • Maia, A. C. D. et al. The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J. Chem. Ecol. 38, 1072–1080 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Stamm, P., Etl, F., Maia, A. C. D., Dötterl, S. & Schulz, S. Synthesis, absolute configurations, and biological activities of floral scent compounds from night-blooming Araceae. J. Org. Chem. 86, 5245–5254 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jürgens, A., Wee, S. L., Shuttleworth, A. & Johnson, S. D. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol. Lett. 16, 1157–1167 (2013).

    PubMed 

    Google Scholar 

  • Zito, P., Sajeva, M., Raspi, A. & Dötterl, S. Dimethyl disulfide and dimethyl trisulfide: so similar yet so different in evoking biological responses in saprophilous flies. Chemoecology 24, 261–267 (2014).

    CAS 

    Google Scholar 

  • El-Sayed, A. M. The Pherobase: database of pheromones and semiochemicals. https://www.pherobase.com (2021).

  • Kite, G. C. The floral odour of Arum maculatum. Biochem. Syst. Ecol. 23, 343–354 (1995).

    CAS 

    Google Scholar 

  • Chartier, M., Pélozuelo, L. & Gibernau, M. Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Ann. Soc. Entomol. Fr. 47, 71–77 (2011).

    Google Scholar 

  • Chartier, M., Pélozuelo, L., Buatois, B., Bessière, J. M. & Gibernau, M. Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species. Funct. Ecol. 27, 1367–1381 (2013).

    Google Scholar 

  • Marotz-Clausen, G. et al. Incomplete synchrony of inflorescence scent and temperature patterns in Arum maculatum L. (Araceae). Phytochemistry 154, 77–84 (2018).

  • Szenteczki, M. A. et al. Spatial and temporal heterogeneity in pollinator communities maintains within-species floral odour variation. Oikos 130, 1487–1499 (2021).

    Google Scholar 

  • Espíndola, A., Pellissier, L. & Alvarez, N. Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos 120, 728–734 (2011).

    Google Scholar 

  • Laina, D. et al. Local insect availability partly explains geographical differences in floral visitor assemblages of Arum maculatum L. (Araceae). Front. Plant Sci. 13, https://doi.org/10.3389/fpls.2022.838391 (2022).

  • Tonnoir, A. L. A synopsis of the British Psychodidae (Dipt.) with descriptions of new species. Trans. Soc. Br. Entomol. 7, 21–64 (1940).

  • Roháček, J., Beck-Haug, I. & Dobat, K. Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (Insecta: Diptera). Senckenb. Biol. 71, 259–268 (1990).

    Google Scholar 

  • Sayers, T. D. J., Steinbauer, M. J., Farnier, K. & Miller, R. E. Dung mimicry in Typhonium (Araceae): explaining floral trait and pollinator divergence in a widespread species complex and a rare sister species. Bot. J. Linn. Soc. 193, 375–401 (2020).

    Google Scholar 

  • Gibernau, M., Macquart, D. & Przetak, G. Pollination in the genus Arum: a review. Aroideana 27, 148–166 (2004).

    Google Scholar 

  • Kakishima, S. & Okuyama, Y. Pollinator assemblages of Arisaema heterocephalum subsp. majus (Araceae), a critically endangered species endemic to Tokunoshima Island, Central Ryukyus. Bull. Natl. Mus. Nat. Sci., Ser. B 44, 173–179 (2018).

  • Urru, I. et al. Pollination strategies in Cretan Arum lilies. Biol. J. Linn. Soc. 101, 991–1001 (2010).

    Google Scholar 

  • Diaz, A. & Kite, G. C. A comparison of the pollination ecology of Arum maculatum and Arum italicum in England. Watsonia 24, 171–181 (2002).

    Google Scholar 

  • Lack, A. J. & Diaz, A. The pollination of Arum maculatum L.: a historical review and new observations. Watsonia 18, 333–342 (1991).

  • Kite, G. C. et al. Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). in Reproductive Biology (eds. Owens, S. J. & Rudall, P. J.) 295–315 (Kew Royal Botanic Gardens, 1998).

  • Laurence, B. R. The larval inhabitants of cow pats. J. Anim. Ecol. 23, 234–260 (1954).

    Google Scholar 

  • Wagner, R. Zur Kenntnis der Psychodidenfauna des Allgäus. Nachrichtenblatt der Bayer. Entomol. 26, 23–28 (1977).

    Google Scholar 

  • Satchell, G. H. The ecology of the British species of Psychoda (Diptera: Psychodidae). Ann. Appl. Biol. 34, 611–621 (1947).

    CAS 
    PubMed 

    Google Scholar 

  • Withers, P. & O’Connor, J. P. A preliminary account of the Irish species of moth fly (Diptera: Psychodidae). Proc. R. Ir. Acad. B. 92, 61–77 (1992).

    Google Scholar 

  • Dormont, L., Jay-Robert, P., Bessière, J. M., Rapior, S. & Lumaret, J. P. Innate olfactory preferences in dung beetles. J. Exp. Biol. 213, 3177–3186 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Sládeček, F. X. J., Dötterl, S., Schäffler, I., Segar, S. T. & Konvicka, M. Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. J. Chem. Ecol. 47, 433–443 (2021).

    PubMed 

    Google Scholar 

  • Scheven, H. J. GC/MS Untersuchungen des Appendixduftes blühender Pflanzen von Arum maculatum L. und Arum italicum MILLER; Nachweis der attraktiven Wirkung der Duftbestandteile Indol, Humulen und p-Kresol auf Psychoda phalaenoides L. (Philipps-Universität Marburg, 1994).

  • Schiestl, F. P. & Marion-Poll, F. Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. in Analysis of Taste and Aroma (eds. Jackson, J. F. & Linskens, H. F.) 173–198 (Springer Berlin Heidelberg, 2002).

  • Jhumur, U. S., Dötterl, S. & Jürgens, A. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod. Plant. Interact. 1, 245–254 (2007).

    Google Scholar 

  • Heiduk, A. et al. Ceropegia sandersonii mimics attacked honeybees to attract kleptoparasitic flies for pollination. Curr. Biol. 26, 1–7 (2016).

    Google Scholar 

  • Suinyuy, T. N., Donaldson, J. S. & Johnson, S. D. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism. Proc. R. Soc. B Biol. Sci. 282, (2015). http://doi.org/10.1098/rspb.2015.2053

  • Dötterl, S. et al. Nursery pollination by a moth in Silene latifolia: The role of odours in eliciting antennal and behavioural responses. New Phytol. 169, 707–718 (2005).

    Google Scholar 

  • Schiestl, F. P. et al. The chemistry of sexual deception in an orchid-wasp pollination system. Science 80(302), 437–438 (2003).

    Google Scholar 

  • Stensmyr, M. C. et al. Rotting smell of dead-horse arum florets. Nature 420, 625–626 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Lukas, K., Harig, T., Schulz, S., Hadersdorfer, J. & Dötterl, S. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee pollinators. Chemoecology 29, 211–223 (2019).

    Google Scholar 

  • Bermadinger-Stabentheiner, E. & Stabentheiner, A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. New Phytol. 131, 41–50 (1995).

    PubMed 

    Google Scholar 

  • Dötterl, S., Füssel, U., Jürgens, A. & Aas, G. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31, 2993–2998 (2005).

    PubMed 

    Google Scholar 

  • Dötterl, S. et al. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 1113, 231–238 (2006).

  • Brandt, K. et al. Subtle chemical variations with strong ecological significance: stereoselective responses of male orchid bees to stereoisomers of carvone epoxide. J. Chem. Ecol. 45, 464–473 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zito, P., Dötterl, S. & Sajeva, M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators. J. Chem. Ecol. 41, 340–349 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kováts, E. & Weisz, P. Über den Retentionsindex und seine Verwendung zur Aufstellung einer Polaritätsskala für Lösungsmittel. Berichte der Bunsengesellschaft für Phys. Chem. 69, 812–820 (1965).

    Google Scholar 

  • Dougherty, M. J., Guerin, P. M., Ward, R. D. & Hamilton, J. G. C. Behavioural and electrophysiological responses of the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) when exposed to canid host odour kairomones. Physiol. Entomol. 24, 251–262 (1999).

    CAS 

    Google Scholar 

  • Sant’Ana, A. L., Eiras, A. E. & Cavalcante, R. R. Electroantennographic responses of the Lutzomyia (Lutzomyia) longipalpis (Lutz and Neiva) (Diptera: Psychodidae) to 1-octen-3-ol. Neotrop. Entomol. 31, 13–17 (2002).

  • Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. (Allured Publishing Corporation, 2007).

  • Johnson, S. D. & Jürgens, A. Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S. Afr. J. Bot. 76, 796–807 (2010).

    CAS 

    Google Scholar 

  • Thakeow, P., Angeli, S., Weißbecker, B. & Schütz, S. Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem. Senses 33, 379–387 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Junker, R. R. & Blüthgen, N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann. Bot. 105, 777–782 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Abraham, J. et al. Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ. Entomol. 44, 356–367 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Stökl, J. et al. Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. Am. J. Bot. 95, 472–481 (2008).

    PubMed 

    Google Scholar 

  • Salamanca, J., Souza, B., Lundgren, J. G. & Rodriguez-Saona, C. From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27, 51–63 (2017).

    CAS 

    Google Scholar 

  • Revel, N., Alvarez, N., Gibernau, M. & Espíndola, A. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod. Plant. Interact. 6, 35–44 (2012).

    Google Scholar 

  • Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis

    Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake