in

Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.

  • Raguso, R. A. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39, 549–569 (2008).

    Google Scholar 

  • Knudsen, J. T., Eriksson, R., Gershenzon, J. & Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).

    Google Scholar 

  • Hadacek, F. & Weber, M. Club-shaped organs as additional osmophores within the Sauromatum inflorescence: odour analysis, ultrastructural changes and pollination aspects. Plant Biol. 4, 367–383 (2002).

    CAS 

    Google Scholar 

  • Schlumpberger, B. O. & Raguso, R. A. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117, 801–814 (2008).

    Google Scholar 

  • Gfrerer, E. et al. Floral scents of a deceptive plant are hyperdiverse and under population-specific phenotypic selection. Front. Plant Sci. 12, https://doi.org/10.3389/fpls.2021.719092 (2021).

  • Primante, C. & Dötterl, S. A syrphid fly uses olfactory cues to find a non-yellow flower. J. Chem. Ecol. 36, 1207–1210 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Theis, N. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J. Chem. Ecol. 32, 917–927 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. & Schiestl, F. The role of volatiles in plant communication. Plant J. 100, 892–907 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiestl, F. P. et al. Orchid pollination by sexual swindle. Nature 399, 421–422 (1999).

    CAS 

    Google Scholar 

  • Schäffler, I. et al. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci. Rep. 5, 1–11 (2015).

    Google Scholar 

  • Castañeda-Zárate, M., Johnson, S. D. & van der Niet, T. Food reward chemistry explains a novel pollinator shift and vestigialization of long floral spurs in an orchid. Curr. Biol. 31, 238–246 (2021).

    PubMed 

    Google Scholar 

  • Dötterl, S., David, A., Boland, W., Silberbauer-Gottsberger, I. & Gottsberger, G. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J. Chem. Ecol. 38, 1539–1543 (2012).

    PubMed 

    Google Scholar 

  • Maia, A. C. D. et al. The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J. Chem. Ecol. 38, 1072–1080 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Stamm, P., Etl, F., Maia, A. C. D., Dötterl, S. & Schulz, S. Synthesis, absolute configurations, and biological activities of floral scent compounds from night-blooming Araceae. J. Org. Chem. 86, 5245–5254 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jürgens, A., Wee, S. L., Shuttleworth, A. & Johnson, S. D. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol. Lett. 16, 1157–1167 (2013).

    PubMed 

    Google Scholar 

  • Zito, P., Sajeva, M., Raspi, A. & Dötterl, S. Dimethyl disulfide and dimethyl trisulfide: so similar yet so different in evoking biological responses in saprophilous flies. Chemoecology 24, 261–267 (2014).

    CAS 

    Google Scholar 

  • El-Sayed, A. M. The Pherobase: database of pheromones and semiochemicals. https://www.pherobase.com (2021).

  • Kite, G. C. The floral odour of Arum maculatum. Biochem. Syst. Ecol. 23, 343–354 (1995).

    CAS 

    Google Scholar 

  • Chartier, M., Pélozuelo, L. & Gibernau, M. Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Ann. Soc. Entomol. Fr. 47, 71–77 (2011).

    Google Scholar 

  • Chartier, M., Pélozuelo, L., Buatois, B., Bessière, J. M. & Gibernau, M. Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species. Funct. Ecol. 27, 1367–1381 (2013).

    Google Scholar 

  • Marotz-Clausen, G. et al. Incomplete synchrony of inflorescence scent and temperature patterns in Arum maculatum L. (Araceae). Phytochemistry 154, 77–84 (2018).

  • Szenteczki, M. A. et al. Spatial and temporal heterogeneity in pollinator communities maintains within-species floral odour variation. Oikos 130, 1487–1499 (2021).

    Google Scholar 

  • Espíndola, A., Pellissier, L. & Alvarez, N. Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos 120, 728–734 (2011).

    Google Scholar 

  • Laina, D. et al. Local insect availability partly explains geographical differences in floral visitor assemblages of Arum maculatum L. (Araceae). Front. Plant Sci. 13, https://doi.org/10.3389/fpls.2022.838391 (2022).

  • Tonnoir, A. L. A synopsis of the British Psychodidae (Dipt.) with descriptions of new species. Trans. Soc. Br. Entomol. 7, 21–64 (1940).

  • Roháček, J., Beck-Haug, I. & Dobat, K. Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (Insecta: Diptera). Senckenb. Biol. 71, 259–268 (1990).

    Google Scholar 

  • Sayers, T. D. J., Steinbauer, M. J., Farnier, K. & Miller, R. E. Dung mimicry in Typhonium (Araceae): explaining floral trait and pollinator divergence in a widespread species complex and a rare sister species. Bot. J. Linn. Soc. 193, 375–401 (2020).

    Google Scholar 

  • Gibernau, M., Macquart, D. & Przetak, G. Pollination in the genus Arum: a review. Aroideana 27, 148–166 (2004).

    Google Scholar 

  • Kakishima, S. & Okuyama, Y. Pollinator assemblages of Arisaema heterocephalum subsp. majus (Araceae), a critically endangered species endemic to Tokunoshima Island, Central Ryukyus. Bull. Natl. Mus. Nat. Sci., Ser. B 44, 173–179 (2018).

  • Urru, I. et al. Pollination strategies in Cretan Arum lilies. Biol. J. Linn. Soc. 101, 991–1001 (2010).

    Google Scholar 

  • Diaz, A. & Kite, G. C. A comparison of the pollination ecology of Arum maculatum and Arum italicum in England. Watsonia 24, 171–181 (2002).

    Google Scholar 

  • Lack, A. J. & Diaz, A. The pollination of Arum maculatum L.: a historical review and new observations. Watsonia 18, 333–342 (1991).

  • Kite, G. C. et al. Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). in Reproductive Biology (eds. Owens, S. J. & Rudall, P. J.) 295–315 (Kew Royal Botanic Gardens, 1998).

  • Laurence, B. R. The larval inhabitants of cow pats. J. Anim. Ecol. 23, 234–260 (1954).

    Google Scholar 

  • Wagner, R. Zur Kenntnis der Psychodidenfauna des Allgäus. Nachrichtenblatt der Bayer. Entomol. 26, 23–28 (1977).

    Google Scholar 

  • Satchell, G. H. The ecology of the British species of Psychoda (Diptera: Psychodidae). Ann. Appl. Biol. 34, 611–621 (1947).

    CAS 
    PubMed 

    Google Scholar 

  • Withers, P. & O’Connor, J. P. A preliminary account of the Irish species of moth fly (Diptera: Psychodidae). Proc. R. Ir. Acad. B. 92, 61–77 (1992).

    Google Scholar 

  • Dormont, L., Jay-Robert, P., Bessière, J. M., Rapior, S. & Lumaret, J. P. Innate olfactory preferences in dung beetles. J. Exp. Biol. 213, 3177–3186 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Sládeček, F. X. J., Dötterl, S., Schäffler, I., Segar, S. T. & Konvicka, M. Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. J. Chem. Ecol. 47, 433–443 (2021).

    PubMed 

    Google Scholar 

  • Scheven, H. J. GC/MS Untersuchungen des Appendixduftes blühender Pflanzen von Arum maculatum L. und Arum italicum MILLER; Nachweis der attraktiven Wirkung der Duftbestandteile Indol, Humulen und p-Kresol auf Psychoda phalaenoides L. (Philipps-Universität Marburg, 1994).

  • Schiestl, F. P. & Marion-Poll, F. Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. in Analysis of Taste and Aroma (eds. Jackson, J. F. & Linskens, H. F.) 173–198 (Springer Berlin Heidelberg, 2002).

  • Jhumur, U. S., Dötterl, S. & Jürgens, A. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod. Plant. Interact. 1, 245–254 (2007).

    Google Scholar 

  • Heiduk, A. et al. Ceropegia sandersonii mimics attacked honeybees to attract kleptoparasitic flies for pollination. Curr. Biol. 26, 1–7 (2016).

    Google Scholar 

  • Suinyuy, T. N., Donaldson, J. S. & Johnson, S. D. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism. Proc. R. Soc. B Biol. Sci. 282, (2015). http://doi.org/10.1098/rspb.2015.2053

  • Dötterl, S. et al. Nursery pollination by a moth in Silene latifolia: The role of odours in eliciting antennal and behavioural responses. New Phytol. 169, 707–718 (2005).

    Google Scholar 

  • Schiestl, F. P. et al. The chemistry of sexual deception in an orchid-wasp pollination system. Science 80(302), 437–438 (2003).

    Google Scholar 

  • Stensmyr, M. C. et al. Rotting smell of dead-horse arum florets. Nature 420, 625–626 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Lukas, K., Harig, T., Schulz, S., Hadersdorfer, J. & Dötterl, S. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee pollinators. Chemoecology 29, 211–223 (2019).

    Google Scholar 

  • Bermadinger-Stabentheiner, E. & Stabentheiner, A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. New Phytol. 131, 41–50 (1995).

    PubMed 

    Google Scholar 

  • Dötterl, S., Füssel, U., Jürgens, A. & Aas, G. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31, 2993–2998 (2005).

    PubMed 

    Google Scholar 

  • Dötterl, S. et al. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 1113, 231–238 (2006).

  • Brandt, K. et al. Subtle chemical variations with strong ecological significance: stereoselective responses of male orchid bees to stereoisomers of carvone epoxide. J. Chem. Ecol. 45, 464–473 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zito, P., Dötterl, S. & Sajeva, M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators. J. Chem. Ecol. 41, 340–349 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kováts, E. & Weisz, P. Über den Retentionsindex und seine Verwendung zur Aufstellung einer Polaritätsskala für Lösungsmittel. Berichte der Bunsengesellschaft für Phys. Chem. 69, 812–820 (1965).

    Google Scholar 

  • Dougherty, M. J., Guerin, P. M., Ward, R. D. & Hamilton, J. G. C. Behavioural and electrophysiological responses of the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) when exposed to canid host odour kairomones. Physiol. Entomol. 24, 251–262 (1999).

    CAS 

    Google Scholar 

  • Sant’Ana, A. L., Eiras, A. E. & Cavalcante, R. R. Electroantennographic responses of the Lutzomyia (Lutzomyia) longipalpis (Lutz and Neiva) (Diptera: Psychodidae) to 1-octen-3-ol. Neotrop. Entomol. 31, 13–17 (2002).

  • Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. (Allured Publishing Corporation, 2007).

  • Johnson, S. D. & Jürgens, A. Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S. Afr. J. Bot. 76, 796–807 (2010).

    CAS 

    Google Scholar 

  • Thakeow, P., Angeli, S., Weißbecker, B. & Schütz, S. Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem. Senses 33, 379–387 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Junker, R. R. & Blüthgen, N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann. Bot. 105, 777–782 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Abraham, J. et al. Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ. Entomol. 44, 356–367 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Stökl, J. et al. Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. Am. J. Bot. 95, 472–481 (2008).

    PubMed 

    Google Scholar 

  • Salamanca, J., Souza, B., Lundgren, J. G. & Rodriguez-Saona, C. From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27, 51–63 (2017).

    CAS 

    Google Scholar 

  • Revel, N., Alvarez, N., Gibernau, M. & Espíndola, A. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod. Plant. Interact. 6, 35–44 (2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis

    A better way to separate gases