in

Bird populations most exposed to climate change are less sensitive to climatic variation

  • Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. B 281, 20141611 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).

    ADS 
    Article 

    Google Scholar 

  • Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).

    ADS 
    Article 

    Google Scholar 

  • Blondel, J., Dias, P. C., Perret, P., Maistre, M. & Lambrechts, M. M. Selection-based biodiversity at a small spatial scale in a low-dispersing insular bird. Science 285, 1399–1402 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    ADS 
    Article 

    Google Scholar 

  • Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. 97, 1630–1633 (2000).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180178 (2019).

    Article 

    Google Scholar 

  • Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: a role for life-history characteristics? Ecol. Evol. 7, 10492–10502 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. B Biol. Sci. 270, 367–372 (2003).

    Article 

    Google Scholar 

  • Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Asch, M. V., Tienderen, P. H. V., Holleman, L. J. M. & Visser, M. E. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 13, 1596–1604 (2007).

    ADS 
    Article 

    Google Scholar 

  • Silverin, B. et al. Ambient temperature effects on photo induced gonadal cycles and hormonal secretion patterns in Great Tits from three different breeding latitudes. Horm. Behav. 54, 60–68 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).

    ADS 
    Article 

    Google Scholar 

  • Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silverin, B., Massa, R. & Stokkan, K. A. Photoperiodic adaptation to breeding at different latitudes in great tits. Gen. Comp. Endocrinol. 90, 14–22 (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Phillimore, A. B. et al. Passerines may be sufficiently plastic to track temperature‐mediated shifts in optimum lay date. Glob. Chang Biol. 22, 3259–3272 (2016).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Bailey, L. D. & van de Pol, M. climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).

    Article 

    Google Scholar 

  • Van de Pol, M. & Bailey, L. D. Quantifying the climatic sensitivity of individuals, populations, and species. Eff. Clim. Change Birds 44; pp. 44–59 (2019).

  • Culina, A. et al. Connecting the data landscape of long‐term ecological studies: the SPI‐Birds data hub. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13388 (2020).

  • Verhagen, I., Tomotani, B. M., Gienapp, P. & Visser, M. E. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J. Exp. Biol. 223, jeb218784 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Buse, A., Dury, S. J., Woodburn, R. J. W., Perrins, C. M. & Good, J. E. G. Effects of elevated temperature on multi-species interactions: the case of Pedunculate Oak, Winter Moth and Tits. Funct. Ecol. 13, 74–82 (1999).

    Article 

    Google Scholar 

  • Van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451–458 (1995).

    Article 

    Google Scholar 

  • Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLOS ONE 8, e65427 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    ADS 
    Article 

    Google Scholar 

  • Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol. 6, e325 (2008).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Dhondt, A. A., Eyckerman, R., Moermans, R. & Hublé, J. Habitat and laying date of Great and Blue Tit Parus major and P. caeruleus. Ibis 126, 388–397 (1984).

    Article 

    Google Scholar 

  • Bourgault, P., Thomas, D., Perret, P. & Blondel, J. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus). Oecologia 162, 885–892 (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Blondel, J., Dias, P. C., Maistre, M. & Perret, P. Habitat Heterogeneity and Life-History Variation of Mediterranean Blue Tits (Parus caeruleus). Auk 110, 511–520 (1993).

    Article 

    Google Scholar 

  • Blondel, J., Dervieux, A., Maistre, M. & Perret, P. Feeding ecology and life history variation of the blue tit in Mediterranean deciduous and sclerophyllous habitats. Oecologia 88, 9–14 (1991).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob. Change Biol. 17, 3002–3009 (2011).

    ADS 
    Article 

    Google Scholar 

  • Massa, B., Cusimano, C. A., Margagliotta, B. & Galici, R. Reproductive characteristics and differential response to seasonal temperatures of blue and great tits (Cyanistes caeruleus & Parus major) in three neighbouring mediterranean habitats. Rev. Ecol. 66, 157–172 (2011).

    Google Scholar 

  • Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Nolet, B. A. et al. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J. Anim. Ecol. 82, 804–813 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petanidou, T. et al. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch. Acta Oecologica 59, 104–111 (2014).

    ADS 
    Article 

    Google Scholar 

  • McLean, N., van der Jeugd, H. P. & van de. Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLOS ONE 13, e0192401 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Article 

    Google Scholar 

  • Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Martin, R. O., Cunningham, S. J. & Hockey, P. A. R. Elevated temperatures drive fine-scale patterns of habitat use in a savanna bird community. Ostrich 86, 127–135 (2015).

    Article 

    Google Scholar 

  • Latimer, C. E. & Zuckerberg, B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 40, 158–170 (2017).

    Article 

    Google Scholar 

  • Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tang, H. et al. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 231, 111262 (2019).

    ADS 
    Article 

    Google Scholar 

  • Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. Biol. Sci. 272, 2561–2569 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Langmore, N. E., Bailey, L. D., Heinsohn, R. G., Russell, A. F. & Kilner, R. M. Egg size investment in superb fairy-wrens: helper effects are modulated by climate. Proc. Biol. Sci. 283, 20161875 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • del Hoyo, J. et al. Handbook of the Birds of the World and BirdLife International Illustrated Checklist of the Birds of the World (Lynx Edicions/Birdlife International, 2016).

  • Both, C. et al. Large–scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. Lond. B Biol. Sci. 271, 1657–1662 (2004).

    Article 

    Google Scholar 

  • Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres 113, D20119 (2008).

    ADS 
    Article 

    Google Scholar 

  • Klok, E. J. & Klein Tank, A. M. G. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29, 1182–1191 (2009).

    Article 

    Google Scholar 

  • Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).

    ADS 
    Article 

    Google Scholar 

  • Slagsvold, T. Annual and geographical variation in the time of breeding of the great tit Parus major and the Pied Flycatcher Ficedula hypoleuca in relation to environmental phenology and spring temperature. Ornis Scand. Scand. J. Ornithol. 7, 127–145 (1976).

    Article 

    Google Scholar 

  • Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15‐year‐old claim: the North Atlantic Oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).

    ADS 
    Article 

    Google Scholar 

  • Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article 

    Google Scholar 

  • Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).

    Article 

    Google Scholar 

  • Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).

    Article 

    Google Scholar 

  • R. Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

  • Bailey, L. D. et al. Bird populations most exposed to climate change are less sensitive to climatic variation, Zenodo, https://doi.org/10.5281/zenodo.5747634 (2022).

  • Bailey, L. D. et al. Bird populations most exposed to climate change are less sensitive to climatic variation, LiamDBailey/baileyetal2021, https://doi.org/10.5281/zenodo.6027546 (2022).


  • Source: Ecology - nature.com

    Punishment institutions selected and sustained through voting and learning

    MIT engineers introduce the Oreometer