Elsdon, T. S. et al. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. An Ann. Rev. 46, 297–330 (2008).
Franco, A., Elliott, M., Franzoi, P. & Torricelli, P. Life strategies of fishes in European estuaries: The functional guild approach. Mar. Ecol. Prog. Ser. 354, 219–228 (2008).
Google Scholar
Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).
Google Scholar
Campana, S. E. & Thorrold, S. R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations?. Can. J. Fish. Aquat. Sci. 58, 30–38 (2001).
Google Scholar
Campana, S. E. Calcium deposition and otolith check formation during periods of stress in Coho Salmon, Oncorhynchus Kisutch. Comp. Biochem. Physiol. 75A, 215–220 (1983).
Google Scholar
Gauldie, R. W. Vaterite otoliths from chinook salmon (Oncorhynchus tshawytscha). N. Z. J. Mar. Fish. Res. 20, 209–217 (1986).
Google Scholar
Casselman, J. M. & Gunn, J. M. Dynamics in year-class strength, growth, and calcified-structure size of native lake trout (Salvelinus namaycush) exposed to moderate acidification and whole-lake neutralization. Can. J. Fish. Aquat. Sci. 49, 102–111 (1992).
Google Scholar
Tomás, J. & Geffen, A. J. Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J. Fish Biol. 63, 1383–1401 (2003).
Google Scholar
Brown, R. & Severin, K. P. Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can. J. Fish. Aquat. Sci. 56, 1898–1903 (1999).
Google Scholar
Melancon, S., Fryer, B. J., Gagnon, J. E., Ludsin, S. A. & Yang, Z. Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can. J. Fish. Aquat. Sci. 62, 2609–2619 (2005).
Google Scholar
Tzeng, W. N. et al. Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar. Ecol. Prog. Ser. 348, 285–295 (2007).
Google Scholar
Jolivet, A., Bardeau, J.-F., Fablet, R., Paulet, Y. M. & de Pontual, H. Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman micro-spectrometry. Anal. Bioanal. Chem. 392, 551–560 (2008).
Google Scholar
Barnes, T. C. & Gillanders, B. M. Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Can. J. Fish. Aquat. Sci. 70, 1159–1166 (2013).
Google Scholar
Javor, B. & Dorval, E. Stability of trace elements in otoliths of juvenile Pacific sardine Sardinops sagax. Calif. Coop. Oceanic Fish. Invest. Rep. 57, 109–123 (2016).
Hobbs, J. A., Yin, Q., Burton, J. & Bennett, W. A. Retrospective determination of natal habitats for an estuarine fish with otolith strontium isotope ratios. Mar. Fresh. Res. 56, 655–660 (2005).
Google Scholar
Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T. & Abele, D. Coexistence of three cal-30 cium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem. Geophys. Geosyst. 13, Q05014 (2012).
Google Scholar
Montagna, P., McCulloch, M., Mazzoli, C., Silenzi, S. & Odorico, R. The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: High-resolution (∼ weekly) trace element systematics. Quat. Sci. Rev. 26, 441–462 (2007).
Google Scholar
Sadekov, A. et al. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata. Paleoce. Paleoclim. 24, 3201 (2009).
Google Scholar
Fowler, A. M., Smith, S. M., Booth, D. J. & Stewart, J. Partial migration of grey mullet (Mugil cephalus) on Australia’s east coast revealed by otolith chemistry. Mar. Environ. Res. 119, 238–244 (2016).
Google Scholar
Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf. Sci. 64, 47–57 (2005).
Google Scholar
Secor, D. H. & Rooker, J. R. Is otolith strontium a useful scalar of life-cycles in estuarine fishes?. Fish. Res. 46, 359–371 (2000).
Google Scholar
Tabouret, H. et al. Otolith microchemistry in Sicydium punctatum: Indices of environmental condition changes after recruitment. Aquat. Liv. Res. 24, 369–378 (2011).
Google Scholar
Neves, V., Guedes, A., Valentim, B., Campos, J. & Freitas, V. High incidence of otolith abnormality in juvenile European flounder Platichthys flesus from a tidal freshwater area. Mar. Biol. Res. 13(9), 933–941 (2017).
Google Scholar
Coll-Lladó, C., Giebichenstein, J., Webb, P. B., Bridges, C. R. & de la Serrana, D. G. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci. Rep. 8, 8384 (2018).
Google Scholar
Kern, Z. et al. Fusiform vateritic inclusions observed in European eel (Anguilla anguilla L.) sagittae. Acta Biol. Hungar. 68, 267–278 (2017).
Google Scholar
Behrens, G., Kuhn, L. T., Ubic, R. & Heuer, A. H. Raman spectra of vateritic calcium carbonate. Spectrosc. Lett. 28, 983–995 (1995).
Google Scholar
Lazar, G. et al. Tracking the growing rings in biogenic aragonite from fish otolith using confocal Raman microspectroscopy and imaging. Stud. UBB Chem. 65(1), 125–136 (2020).
Google Scholar
Farrugio, H., Le Corre, G. & Vaudo, G. Population dynamics of sea bass, sea-bream and sole exploited by the French multigears demersal fishery in the Gulf of Lions (Northwestern Mediterranean). In Study for Assessment and Management of Fisheries in the Western Mediterranean EEC-FAR programme report MA (eds Farrugio, H. & Lleonart, J.) 3–621 (EEC-IFREMER, 1994).
Šegvić-Bubić, T. et al. Population genetic structure of reared and wild gilthead sea bream (Sparus aurata) in the Adriatic Sea inferred with microsatellite loci. Aquaculture 318, 309–315 (2011).
Google Scholar
Šegvić-Bubić, T., Talijančić, I., Grubišić, L., Izquierdo-Gomez, D. & Katavić, I. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: Implications for management. Aquac. Environ. Interact. 6, 43–54 (2014).
Google Scholar
Šegvić-Bubić, T. et al. Site fidelity of farmed gilthead seabream Sparus aurata escapees in a coastal environment of the Adriatic Sea. Aquac. Environ. Interact. 10, 21–34 (2018).
Google Scholar
Somarakis, S., Pavlidis, M., Saapoglou, C., Tsigenopoulos, C. S. & Dempster, T. Evidence for ‘escape through spawning’ in large gilthead seabream Sparus aurata reared in commercial sea-cages. Aquac. Environ. Interact. 3, 135–152 (2013).
Google Scholar
Glamuzina, B. Neretva river fishery: History and perspectives. In Proceedings of Ribe I ribarstvo rijeke Neretve: Stanje i perspektive (eds Glamuzina, B. & Dulčić, J.) 20–30 (Sveučilište u Dubrovniku i Dubrovačko-Neretvanska Županija, 2010).
Glamuzina, B. et al. Observations on the increase of wild gilthead seabream, Sparus aurata abundance, in the eastern Adriatic Sea: Problems and opportunities. Int. Aquat. Res. 6, 127–134 (2014).
Google Scholar
Žužul, I. et al. Spatial connectivity pattern of expanding gilthead seabream populations and its interactions with aquaculture sites: a combined population genetic and physical modelling approach. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: Open or closed?. Science 287, 857–857 (2000).
Google Scholar
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).
Google Scholar
Mercier, L., Mouillot, D., Bruguier, O., Vigliola, L. & Darnaude, A. M. Multi-element otolith fingerprints unravel sea-lagoon lifetime migrations of gilthead sea bream Sparus aurata. Mar. Ecol. Prog. Ser. 444, 175–194 (2012).
Google Scholar
Isnard, E. et al. Getting a good start in life? A comparative analysis of the quality of lagoons as juvenile habitats for the gilthead seabream Sparus aurata in the gulf of Lions. Estuaries Coasts 38, 1937–1950 (2015).
Google Scholar
Morais, P. et al. Response of Gilthead Seabream (Sparus aurata L., 1758) Larvae to Nursery Odor Cues as Described by a New Set of Behavioral Indexes. Front. Mar. Sci. 4, 318 (2017).
Google Scholar
Audouin, J. La daurade de l’étang de Thau Chrysophrys Aurata (LINNÉ) (1962)
Lasserre, P. Osmoregulatory responses to estuarine conditions: chronic osmotic stress and competition. In Estuarine Processes (ed. Wiley, M.) 395–413 (Academic Press, 1976).
Google Scholar
Bauchot, M. L. & Hureau, J. C. In Fishes of the North-Eastern Atlantic and the Mediterranean. II (eds Whitehead, P. J. et al.) 883–907 (UNESCO, 1986).
Loeppky, A. R. et al. Influence of ontogenetic development, temperature, and pCO2 on otolith calcium carbonate polymorph composition in sturgeons. Sci. Rep. 11, 13878 (2021).
Google Scholar
Barnett-Johnson, R., Ramos, F. C., Grimes, C. B. & MacFarlane, R. B. Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): Opening avenues in fisheries science applications. Can. J. Fish. Aquat. Sci. 62, 2425–2430 (2005).
Google Scholar
Beckman, D. W. & Wilson, C. A. Seasonal timing of opaque zone formation in fish otoliths. In Recent Developments in Fish otolith Research (eds Secor, D. H. et al.) 27–43 (University of South Carolina Press, 1995).
Hüssy, K. & Mosegaard, H. Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context. Can. J. Fish. Aquat. Sci. 61, 1021–1031 (2004).
Google Scholar
Hoff, G. R. & Fuiman, L. A. Morphometry and composition of red drum otoliths: Changes associated with temperature, somatic growth rate, and age. Comp. Biochem. Physiol. 106A, 209–219 (1993).
Google Scholar
Høie, H. & Folkvord, A. Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. J. Fish Biol. 68(3), 826–837 (2006).
Google Scholar
Buljan, M. & Zore-Armanda, M. Oceanographical properities of the Adriatic Sea. Oceanogr. Mar. Biol. Ann. Rev. 14, 11–98 (1976).
Google Scholar
Russo, T., Costa, C. & Cataudella, S. Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J. Fish Biol. 71, 629–656 (2007).
Google Scholar
Ellis, J. E., Wiens, J. A. & Rodell, C. F. A conceptual model of diet selection as an ecosystem process. J. Theor. Biol. 60, 93–108 (1976).
Google Scholar
Grbec, B. & Morović, M. Seasonal thermohaline fluctuations in the middle Adriatic Sea. Il Nuovo Cimento C 2, 561–576 (1997).
Google Scholar
Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).
Google Scholar
Gillikin, D. P., Wanamaker, A. D. & Andrus, C. F. T. Chemical sclerochronology. Chem. Geol. 526, 1–6 (2019).
Google Scholar
Rea, D. G. Study of the experimental factors affecting raman band intensities in liquids. J. Opt. Soc. Am. 49, 90–101 (1959).
Google Scholar
Tuschel, D. Practical group theory and Raman spectroscopy, part II: Application of polarization. Spectroscopy 29(9), 14–21 (2014).
Sherwood, P. M. A. Vibrational Spectroscopy of Solids 4 (Cambridge University Press, 1972).
Dick, S. et al. Surface-enhanced raman spectroscopy as a probe of the surface chemistry of nanostructured materials. Adv. Mater. 28(27), 5705–5711. https://doi.org/10.1002/adma.201505355 (2016).
Google Scholar
Neilson, J. D. & Geen, G. H. Effects of feeding regimes and diel temperature cycles on otolith increment formation in juvenile chinook salmon, Oncorhynchus tshawytscha. Fish. Bull. 83, 91–101 (1985).
Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Method Ecol. Evol. 6, 806–816 (2018).
Google Scholar
DHMZ. Meteorological and Hydrological Service. Meteo. Hydro. Bull. 6. www.meteo.hr (2019).
Jochum, K. P. et al. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand. Geoanalyt. Res. 29, 333–338 (2005).
Google Scholar
Jochum, K. P. et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 36, 397–429 (2011).
Google Scholar
Jochum, K. P. et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 318–319, 31–44 (2012).
Google Scholar
Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. Atmos. Spectrom. 22, 112–121 (2007).
Google Scholar
Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. TERMITE: An R script for fast reduction of laser ablation inductively coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 131, 1079–1087 (2017).
Google Scholar
Yoshinaga, J., Nakama, A., Morita, M. & Edmonds, J. S. Fish otolith reference material for quality assurance of chemical analyses. Mar. Chem. 69, 91–97 (2000).
Google Scholar
Vrdoljak, D. et al. Otolith fingerprints reveals potential pollution exposure of newly settled juvenile Sparus aurata. Mar. Pollut. Bull. 160, 111695 (2020).
Google Scholar
Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecol. 84, 511–552 (2003).
Google Scholar
Source: Ecology - nature.com