in

Development of InDel markers for interspecific hybridization between hill pigeons and feral pigeons based on whole-genome re-sequencing

  • Darwin, C. On the Origin of Species by Means of Natural Selection (Murray, 1859).

    Google Scholar 

  • Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20(5), 229–237. https://doi.org/10.1016/j.tree.2005.02.010 (2005).

    Article 

    Google Scholar 

  • Ottenburghs, J. Multispecies hybridization in birds. Avian Res. 10(1), 20. https://doi.org/10.1186/s40657-019-0159-4 (2019).

    Article 

    Google Scholar 

  • Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256(5054), 193–197. https://doi.org/10.1126/science.256.5054.193 (1992).

    Article 
    ADS 

    Google Scholar 

  • Ottenburghs, J. Exploring the hybrid speciation continuum in birds. Ecol. Evol. 8(24), 13027–13034. https://doi.org/10.1002/ece3.4558 (2018).

    Article 

    Google Scholar 

  • Stebbins, G. L. Variation and Evolution in Plants in Variation and Evolution in Plants (Columbia University Press, 1950).

    Book 

    Google Scholar 

  • Justyn, N. M., Callaghan, C. T. & Hill, G. E. Birds rarely hybridize: A citizen science approach to estimating rates of hybridization in the wild. Evolution 74(6), 1216–1223. https://doi.org/10.1111/evo.13943 (2020).

    Article 

    Google Scholar 

  • Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1999).

    Google Scholar 

  • Uy, J. A. C., Irwin, D. E. & Webster, M. S. Behavioral isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-110617-062646 (2018).

    Article 

    Google Scholar 

  • Leighton, G. M., Lu, L. J., Holop, E., Dobler, J. & Ligon, R. A. Sociality and migration predict hybridization across birds. Proc. Biol. Sci. 288(1947), 20201946. https://doi.org/10.1098/rspb.2020.1946 (2021).

    Article 

    Google Scholar 

  • Chunco, A. J. Hybridization in a warmer world. Ecol. Evol. 4(10), 2019–2031. https://doi.org/10.1002/ece3.1052 (2014).

    Article 

    Google Scholar 

  • Grabenstein, K. C. & Taylor, S. A. Breaking barriers: Causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33(3), 198–212. https://doi.org/10.1016/j.tree.2017.12.008 (2018).

    Article 

    Google Scholar 

  • Quilodrán, C. S., Montoya-Burgos, J. I. & Currat, M. Harmonizing hybridization dissonance in conservation. Commun. Biol. 3(1), 391. https://doi.org/10.1038/s42003-020-1116-9 (2020).

    Article 

    Google Scholar 

  • Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27(1), 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).

    Article 

    Google Scholar 

  • Chan, C. et al. Genetic analysis of interspecific hybridisation in the world’s only Forbes’ parakeet (Cyanoramphus forbesi) natural population. Conserv. Genet. 7(4), 493–506. https://doi.org/10.1007/s10592-005-9060-2 (2006).

    Article 

    Google Scholar 

  • Huang, L. et al. Molecular evidence of introgressive hybridization between related species Jankowski’s Bunting (Emberiza jankowskii) and Meadow Bunting (Emberiza cioides) (Aves: Passeriformes). Avian Res. 13, 100035. https://doi.org/10.1016/j.avrs.2022.100035 (2022).

    Article 

    Google Scholar 

  • Reudink, M. W., Mech, S. G., Mullen, S. P. & Curry, R. L. Structure and dynamics of the hybrid zone between Black-capped chickadee (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in southeastern Pennsylvania. Auk 124(2), 463–478. https://doi.org/10.1093/auk/124.2.463 (2007).

    Article 

    Google Scholar 

  • Negro, J. J., Torres, M. J. & Godoy, J. A. RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa × A. graeca) in Spain. Biol. Conserv. 98(1), 19–24. https://doi.org/10.1016/S0006-3207(00)00129-4 (2001).

    Article 

    Google Scholar 

  • Bensch, S., Helbig, A. J., Salomon, M. & Seibold, I. Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Mol. Ecol. 11(3), 473–481. https://doi.org/10.1046/j.0962-1083.2001.01455.x (2002).

    Article 

    Google Scholar 

  • Caballero-López, V., Lundberg, M., Sokolovskis, K. & Bensch, S. Transposable elements mark a repeat-rich region associated with migratory phenotypes of willow warblers (Phylloscopus trochilus). Mol. Ecol. 31(4), 1128–1141. https://doi.org/10.1111/mec.16292 (2022).

    Article 

    Google Scholar 

  • Haig, S. M., Mullins, T. D., Forsman, E. D., Trail, P. W. & Wennerberg, L. Genetic identification of spotted owls, barred owls, and their hybrids: Legal implications of hybrid identity. Conserv. Biol. 18(5), 1347–1357. https://doi.org/10.1111/j.1523-1739.2004.00206.x (2004).

    Article 

    Google Scholar 

  • Michalczuk, J. et al. Tests of multiple molecular markers for the identification of Great Spotted and Syrian woodpeckers and their hybrids. J. Ornithol. 155(3), 591–600. https://doi.org/10.1007/s10336-014-1040-1 (2014).

    Article 

    Google Scholar 

  • Väli, Ü. et al. Microsatellites and single nucleotide polymorphisms in avian hybrid identification: A comparative case study. J. Avian Biol. 41(1), 34–49. https://doi.org/10.1111/j.1600-048X.2009.04730.x (2010).

    Article 

    Google Scholar 

  • Wiley, C., Qvarnström, A., Andersson, G., Borge, T. & Saetre, G. P. Postzygotic isolation over multiple generations of hybrid descendents in a natural hybrid zone: How well do single-generation estimates reflect reproductive isolation?. Evolution 63(7), 1731–1739. https://doi.org/10.1111/j.1558-5646.2009.00674.x (2009).

    Article 

    Google Scholar 

  • Adedze, Y. M. N. et al. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Sci. Rep. 11(1), 3872. https://doi.org/10.1038/s41598-021-83313-x (2021).

    Article 
    ADS 

    Google Scholar 

  • Weinman, L. R., Solomon, J. W. & Rubenstein, D. R. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Mol. Ecol. Resour. 15(3), 502–511. https://doi.org/10.1111/1755-0998.12330 (2015).

    Article 

    Google Scholar 

  • Noda, T., Daiou, K., Mihara, T. & Nagano, Y. Development of indel markers for the selection of Satsuma mandarin (Citrus unshiu Marc.) hybrids that can be used for low-cost genotyping with agarose gels. Euphytica 216(7), 115. https://doi.org/10.1007/s10681-020-02654-2 (2020).

    Article 

    Google Scholar 

  • Väli, U., Brandström, M., Johansson, M. & Ellegren, H. Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet. 9(1), 8. https://doi.org/10.1186/1471-2156-9-8 (2008).

    Article 

    Google Scholar 

  • Shapiro, M. D. et al. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339(6123), 1063–1067. https://doi.org/10.1126/science.1230422 (2013).

    Article 
    ADS 

    Google Scholar 

  • Schwenk, K., Brede, N. & Streit, B. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1505), 2805–2811. https://doi.org/10.1098/rstb.2008.0055 (2008).

    Article 

    Google Scholar 

  • Darwin, C. The Variation of Animals and Plants under Domestication 2 (Murray, USA, 1868).

    Google Scholar 

  • Long, J. L. Introduced Birds of the World: The Worlwide History, Distribution and Influence of Birds Introduced to New Environments (David and Abbott, 1981).

    Google Scholar 

  • Shapiro, M. D. & Domyan, E. T. Domestic pigeons. Curr. Biol. 23(8), R302–R303. https://doi.org/10.1016/j.cub.2013.01.063 (2013).

    Article 

    Google Scholar 

  • Gholamhosseini, A., Vardakis, M., Aliabadian, M., Nijman, V. & Vonk, R. Hybridization between sister taxa versus non-sister taxa: A case study in birds. Bird Study 60(2), 195–201. https://doi.org/10.1080/00063657.2013.770815 (2013).

    Article 

    Google Scholar 

  • Johnston, R. F., Siegel-Causey, D. & Johnson, S. G. European populations of the rock dove Columba livia and genotypic extinction. Am. Midl. Nat. 120(1), 1–10. https://doi.org/10.2307/2425881 (1988).

    Article 

    Google Scholar 

  • Kim, J. Y. et al. Population genetic structure and conservation management of hill pigeons (Columba rupestris) recently endangered in South Korea. Genes Genom. https://doi.org/10.1007/s13258-021-01212-x (2022).

    Article 

    Google Scholar 

  • Baptista, L. F., Trail, P. W., Horblit, H. M. & Kirwan, G. M. In Hill Pigeon (Columba rupestris). version 1.0 in Birds of the World (eds del Hoyo, J. et al.) (Cornell Laboratory of Ornithology, 2020). https://doi.org/10.2173/bow.hilpig1.01.

    Chapter 

    Google Scholar 

  • McCarthy, E. M. Handbook of Avian Hybrids of the World (Oxford University Press, 2006).

    Google Scholar 

  • Lijtmaer, D. A., Mahler, B. & Tubaro, P. L. Hybridization and postzygotic isolation patterns in pigeons and doves. Evolution 57(6), 1411–1418. https://doi.org/10.1111/j.0014-3820.2003.tb00348.x (2003).

    Article 

    Google Scholar 

  • Johnston, R. F. & Janiga, M. Feral Pigeons (Oxford University Press, 1995). https://doi.org/10.2307/2425881.

    Book 

    Google Scholar 

  • Stringham, S. A. et al. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Curr. Biol. 22(4), 302–308. https://doi.org/10.1016/j.cub.2011.12.045 (2012).

    Article 

    Google Scholar 

  • Hernández, F., Brown, J. I., Kaminski, M., Harvey, M. G. & Lavretsky, P. Genomic evidence for rare hybridization and large demographic changes in the evolutionary histories of four North American dove species. Animals (Basel) 11(9), 2677. https://doi.org/10.3390/ani11092677 (2021).

    Article 

    Google Scholar 

  • Séré, M. et al. Null allele, allelic dropouts or rare sex detection in clonal organisms: Simulations and application to real data sets of pathogenic microbes. Parasit. Vectors 7(1), 331. https://doi.org/10.1186/1756-3305-7-331 (2014).

    Article 

    Google Scholar 

  • Chan, W. Y., Hoffmann, A. A. & Oppen, M. J. H. Hybridization as a conservation management tool. Conserv. Lett. 12, 5. https://doi.org/10.1111/conl.12652 (2019).

    Article 

    Google Scholar 

  • Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17(1), 285–293. https://doi.org/10.1111/j.1365-294X.2007.03417.x (2008).

    Article 

    Google Scholar 

  • Wayne, R. K. & Shaffer, H. B. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25(11), 2680–2689. https://doi.org/10.1111/mec.13642 (2016).

    Article 

    Google Scholar 

  • Pfennig, K. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species range expansion. Proc. Biol. Sci. 283(1839), 20161329. https://doi.org/10.1098/rspb.2016.1329 (2016).

    Article 

    Google Scholar 

  • Oliveira, R. et al. Toward a genome-wide approach for detecting hybrids: Informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115(3), 195–205. https://doi.org/10.1038/hdy.2015.25 (2015).

    Article 

    Google Scholar 

  • Austin, O. L. Jr. The Birds of Korea. Bulletin of the Museum of Comparative Zoology (Harvard College, 1948).

    Google Scholar 

  • Kim, J. A. et al. Whole-genome sequencing revealed different demographic histories among the Korean endemic hill pigeon (Columba rupestris), rock pigeon (Columba livia var. domestica) and oriental turtle dove (Streptopelia orientalis). Genes Genom. 44(10), 1231–1242. https://doi.org/10.1007/s13258-022-01288-z (2022).

    Article 

    Google Scholar 

  • NIBR. Genetic Diversity of Animal Resources IV_1 (National Institute of Biological Resources, 2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates

    Protistan epibionts affect prey selectivity patterns and vulnerability to predation in a cyclopoid copepod