Darwin, C. On the Origin of Species by Means of Natural Selection (Murray, 1859).
Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20(5), 229–237. https://doi.org/10.1016/j.tree.2005.02.010 (2005).
Google Scholar
Ottenburghs, J. Multispecies hybridization in birds. Avian Res. 10(1), 20. https://doi.org/10.1186/s40657-019-0159-4 (2019).
Google Scholar
Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256(5054), 193–197. https://doi.org/10.1126/science.256.5054.193 (1992).
Google Scholar
Ottenburghs, J. Exploring the hybrid speciation continuum in birds. Ecol. Evol. 8(24), 13027–13034. https://doi.org/10.1002/ece3.4558 (2018).
Google Scholar
Stebbins, G. L. Variation and Evolution in Plants in Variation and Evolution in Plants (Columbia University Press, 1950).
Google Scholar
Justyn, N. M., Callaghan, C. T. & Hill, G. E. Birds rarely hybridize: A citizen science approach to estimating rates of hybridization in the wild. Evolution 74(6), 1216–1223. https://doi.org/10.1111/evo.13943 (2020).
Google Scholar
Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1999).
Uy, J. A. C., Irwin, D. E. & Webster, M. S. Behavioral isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49(1), 1–24. https://doi.org/10.1146/annurev-ecolsys-110617-062646 (2018).
Google Scholar
Leighton, G. M., Lu, L. J., Holop, E., Dobler, J. & Ligon, R. A. Sociality and migration predict hybridization across birds. Proc. Biol. Sci. 288(1947), 20201946. https://doi.org/10.1098/rspb.2020.1946 (2021).
Google Scholar
Chunco, A. J. Hybridization in a warmer world. Ecol. Evol. 4(10), 2019–2031. https://doi.org/10.1002/ece3.1052 (2014).
Google Scholar
Grabenstein, K. C. & Taylor, S. A. Breaking barriers: Causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33(3), 198–212. https://doi.org/10.1016/j.tree.2017.12.008 (2018).
Google Scholar
Quilodrán, C. S., Montoya-Burgos, J. I. & Currat, M. Harmonizing hybridization dissonance in conservation. Commun. Biol. 3(1), 391. https://doi.org/10.1038/s42003-020-1116-9 (2020).
Google Scholar
Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27(1), 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).
Google Scholar
Chan, C. et al. Genetic analysis of interspecific hybridisation in the world’s only Forbes’ parakeet (Cyanoramphus forbesi) natural population. Conserv. Genet. 7(4), 493–506. https://doi.org/10.1007/s10592-005-9060-2 (2006).
Google Scholar
Huang, L. et al. Molecular evidence of introgressive hybridization between related species Jankowski’s Bunting (Emberiza jankowskii) and Meadow Bunting (Emberiza cioides) (Aves: Passeriformes). Avian Res. 13, 100035. https://doi.org/10.1016/j.avrs.2022.100035 (2022).
Google Scholar
Reudink, M. W., Mech, S. G., Mullen, S. P. & Curry, R. L. Structure and dynamics of the hybrid zone between Black-capped chickadee (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in southeastern Pennsylvania. Auk 124(2), 463–478. https://doi.org/10.1093/auk/124.2.463 (2007).
Google Scholar
Negro, J. J., Torres, M. J. & Godoy, J. A. RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa × A. graeca) in Spain. Biol. Conserv. 98(1), 19–24. https://doi.org/10.1016/S0006-3207(00)00129-4 (2001).
Google Scholar
Bensch, S., Helbig, A. J., Salomon, M. & Seibold, I. Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Mol. Ecol. 11(3), 473–481. https://doi.org/10.1046/j.0962-1083.2001.01455.x (2002).
Google Scholar
Caballero-López, V., Lundberg, M., Sokolovskis, K. & Bensch, S. Transposable elements mark a repeat-rich region associated with migratory phenotypes of willow warblers (Phylloscopus trochilus). Mol. Ecol. 31(4), 1128–1141. https://doi.org/10.1111/mec.16292 (2022).
Google Scholar
Haig, S. M., Mullins, T. D., Forsman, E. D., Trail, P. W. & Wennerberg, L. Genetic identification of spotted owls, barred owls, and their hybrids: Legal implications of hybrid identity. Conserv. Biol. 18(5), 1347–1357. https://doi.org/10.1111/j.1523-1739.2004.00206.x (2004).
Google Scholar
Michalczuk, J. et al. Tests of multiple molecular markers for the identification of Great Spotted and Syrian woodpeckers and their hybrids. J. Ornithol. 155(3), 591–600. https://doi.org/10.1007/s10336-014-1040-1 (2014).
Google Scholar
Väli, Ü. et al. Microsatellites and single nucleotide polymorphisms in avian hybrid identification: A comparative case study. J. Avian Biol. 41(1), 34–49. https://doi.org/10.1111/j.1600-048X.2009.04730.x (2010).
Google Scholar
Wiley, C., Qvarnström, A., Andersson, G., Borge, T. & Saetre, G. P. Postzygotic isolation over multiple generations of hybrid descendents in a natural hybrid zone: How well do single-generation estimates reflect reproductive isolation?. Evolution 63(7), 1731–1739. https://doi.org/10.1111/j.1558-5646.2009.00674.x (2009).
Google Scholar
Adedze, Y. M. N. et al. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Sci. Rep. 11(1), 3872. https://doi.org/10.1038/s41598-021-83313-x (2021).
Google Scholar
Weinman, L. R., Solomon, J. W. & Rubenstein, D. R. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Mol. Ecol. Resour. 15(3), 502–511. https://doi.org/10.1111/1755-0998.12330 (2015).
Google Scholar
Noda, T., Daiou, K., Mihara, T. & Nagano, Y. Development of indel markers for the selection of Satsuma mandarin (Citrus unshiu Marc.) hybrids that can be used for low-cost genotyping with agarose gels. Euphytica 216(7), 115. https://doi.org/10.1007/s10681-020-02654-2 (2020).
Google Scholar
Väli, U., Brandström, M., Johansson, M. & Ellegren, H. Insertion-deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet. 9(1), 8. https://doi.org/10.1186/1471-2156-9-8 (2008).
Google Scholar
Shapiro, M. D. et al. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339(6123), 1063–1067. https://doi.org/10.1126/science.1230422 (2013).
Google Scholar
Schwenk, K., Brede, N. & Streit, B. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1505), 2805–2811. https://doi.org/10.1098/rstb.2008.0055 (2008).
Google Scholar
Darwin, C. The Variation of Animals and Plants under Domestication 2 (Murray, USA, 1868).
Long, J. L. Introduced Birds of the World: The Worlwide History, Distribution and Influence of Birds Introduced to New Environments (David and Abbott, 1981).
Shapiro, M. D. & Domyan, E. T. Domestic pigeons. Curr. Biol. 23(8), R302–R303. https://doi.org/10.1016/j.cub.2013.01.063 (2013).
Google Scholar
Gholamhosseini, A., Vardakis, M., Aliabadian, M., Nijman, V. & Vonk, R. Hybridization between sister taxa versus non-sister taxa: A case study in birds. Bird Study 60(2), 195–201. https://doi.org/10.1080/00063657.2013.770815 (2013).
Google Scholar
Johnston, R. F., Siegel-Causey, D. & Johnson, S. G. European populations of the rock dove Columba livia and genotypic extinction. Am. Midl. Nat. 120(1), 1–10. https://doi.org/10.2307/2425881 (1988).
Google Scholar
Kim, J. Y. et al. Population genetic structure and conservation management of hill pigeons (Columba rupestris) recently endangered in South Korea. Genes Genom. https://doi.org/10.1007/s13258-021-01212-x (2022).
Google Scholar
Baptista, L. F., Trail, P. W., Horblit, H. M. & Kirwan, G. M. In Hill Pigeon (Columba rupestris). version 1.0 in Birds of the World (eds del Hoyo, J. et al.) (Cornell Laboratory of Ornithology, 2020). https://doi.org/10.2173/bow.hilpig1.01.
Google Scholar
McCarthy, E. M. Handbook of Avian Hybrids of the World (Oxford University Press, 2006).
Lijtmaer, D. A., Mahler, B. & Tubaro, P. L. Hybridization and postzygotic isolation patterns in pigeons and doves. Evolution 57(6), 1411–1418. https://doi.org/10.1111/j.0014-3820.2003.tb00348.x (2003).
Google Scholar
Johnston, R. F. & Janiga, M. Feral Pigeons (Oxford University Press, 1995). https://doi.org/10.2307/2425881.
Google Scholar
Stringham, S. A. et al. Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Curr. Biol. 22(4), 302–308. https://doi.org/10.1016/j.cub.2011.12.045 (2012).
Google Scholar
Hernández, F., Brown, J. I., Kaminski, M., Harvey, M. G. & Lavretsky, P. Genomic evidence for rare hybridization and large demographic changes in the evolutionary histories of four North American dove species. Animals (Basel) 11(9), 2677. https://doi.org/10.3390/ani11092677 (2021).
Google Scholar
Séré, M. et al. Null allele, allelic dropouts or rare sex detection in clonal organisms: Simulations and application to real data sets of pathogenic microbes. Parasit. Vectors 7(1), 331. https://doi.org/10.1186/1756-3305-7-331 (2014).
Google Scholar
Chan, W. Y., Hoffmann, A. A. & Oppen, M. J. H. Hybridization as a conservation management tool. Conserv. Lett. 12, 5. https://doi.org/10.1111/conl.12652 (2019).
Google Scholar
Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17(1), 285–293. https://doi.org/10.1111/j.1365-294X.2007.03417.x (2008).
Google Scholar
Wayne, R. K. & Shaffer, H. B. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25(11), 2680–2689. https://doi.org/10.1111/mec.13642 (2016).
Google Scholar
Pfennig, K. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species range expansion. Proc. Biol. Sci. 283(1839), 20161329. https://doi.org/10.1098/rspb.2016.1329 (2016).
Google Scholar
Oliveira, R. et al. Toward a genome-wide approach for detecting hybrids: Informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115(3), 195–205. https://doi.org/10.1038/hdy.2015.25 (2015).
Google Scholar
Austin, O. L. Jr. The Birds of Korea. Bulletin of the Museum of Comparative Zoology (Harvard College, 1948).
Kim, J. A. et al. Whole-genome sequencing revealed different demographic histories among the Korean endemic hill pigeon (Columba rupestris), rock pigeon (Columba livia var. domestica) and oriental turtle dove (Streptopelia orientalis). Genes Genom. 44(10), 1231–1242. https://doi.org/10.1007/s13258-022-01288-z (2022).
Google Scholar
NIBR. Genetic Diversity of Animal Resources IV_1 (National Institute of Biological Resources, 2018).
Source: Ecology - nature.com