in

Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil

  • Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635), 929–933 (2003).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Hoegh-Guldberg, O. E. et al. Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Soares, M. et al. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. Mar. Environ. Res. 173(3), 105535 (2021).

  • Ban, N. C. et al. Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. J. Exp. Mar. Biol. Ecol. 408(1–2), 21–31 (2011).

    Article 

    Google Scholar 

  • Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).

    Article 

    Google Scholar 

  • Vercammen, A. et al. Evaluating the impact of accounting for coral cover in large-scale marine conservation prioritizations. Divers. Distrib. 25(10), 1564–1574 (2019).

    Article 

    Google Scholar 

  • Giakoumi, S., Grantham, H. S., Kokkoris, G. D. & Possingham, H. P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 144(2), 753–763 (2011).

    Article 

    Google Scholar 

  • Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665–669 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27(2), 198–215 (2021).

    Article 

    Google Scholar 

  • Day, J. C. Zoning—lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 45(2–3), 139–156 (2002).

    Article 

    Google Scholar 

  • Agardy, T. Ocean Zoning: Making Marine Management More Effective (Earthscan, 2010).

  • Makino, A., Klein, C. J., Beger, M., Jupiter, S. D. & Possingham, H. P. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning. PLoS ONE 8(11), e78986 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Villa, F., Tunesi, L. & Agardy, T. Zoning marine protected areas through spatial multiple-criteria analysis: The case of the Asinara Island National Marine Reserve of Italy. Conserv. Biol. 16(2), 515–526 (2002).

    Article 

    Google Scholar 

  • Muhl, E. K., Esteves Dias, A. C. & Armitage, D. Experiences with governance in three marine conservation zoning initiatives: Parameters for assessment and pathways forward. Front. Mar. Sci. 7, 629 (2020).

    Article 

    Google Scholar 

  • Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6(1), 1–8 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ban, N. C. et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 11(4), 194–202 (2013).

    Article 

    Google Scholar 

  • Teh, L. C., Teh, L. S. & Jumin, R. Combining human preference and biodiversity priorities for marine protected area site selection in Sabah, Malaysia. Biol. Conserv. 167, 396–404 (2013).

    Article 

    Google Scholar 

  • Sarker, S., Rahman, M. M., Yadav, A. K. & Islam, M. M. Zoning of marine protected areas for biodiversity conservation in Bangladesh through socio-spatial data. Ocean Coast. Manag. 173, 114–122 (2019).

    Article 

    Google Scholar 

  • Day, J. C., Kenchington, R. A., Tanzer, J. M. & Cameron, D. S. Marine zoning revisited: How decades of zoning the Great Barrier Reef has evolved as an effective spatial planning approach for marine ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 9–32 (2019).

    Article 

    Google Scholar 

  • Claudet, J. et al. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130(3), 349–369 (2006).

    Article 

    Google Scholar 

  • Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 25(8), 983–992 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McClure, E. C. et al. Higher fish biomass inside than outside marine protected areas despite typhoon impacts in a complex reefscape. Biol. Cons. 241, 108354 (2020).

    Article 

    Google Scholar 

  • Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).

    Article 
    ADS 

    Google Scholar 

  • Pereira, P. H. C., Ternes, M. L. F., Nunes, J. A. C. & Giglio, V. J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 254, 108940 (2021).

    Article 

    Google Scholar 

  • Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757), 98–101 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5(1), e8657 (2010).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12(4), e12638 (2019).

    Article 

    Google Scholar 

  • Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2), 232–243 (2011).

    CAS 
    Article 

    Google Scholar 

  • Miranda, R. J. et al. Integrating long term ecological research (LTER) and marine protected area management: Challenges and solutions. Oecol. Aust. 24(2), 279–300 (2020).

    Article 

    Google Scholar 

  • ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais. ICMBio/MMA (2021).

  • Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2(2), 188–196 (2020).

    Article 
    ADS 

    Google Scholar 

  • Figueiredo, M. S. & Grelle, C. E. V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 15(1), 117–121 (2009).

    Article 

    Google Scholar 

  • Pearce, J. & Ferrier, S. The practical value of modelling relative abundance of species for regional conservation planning: A case study. Biol. Conserv. 98(1), 33–43 (2001).

    Article 

    Google Scholar 

  • Ferreira, H. M., Magris, R. A., Floeter, S. R. & Ferreira, C. E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 301, 113889 (2021).

    Article 

    Google Scholar 

  • Mills, M. et al. Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biol. Conserv. 181, 54–63 (2015).

    Article 

    Google Scholar 

  • Bennett, N. J. et al. Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv. Lett. 12(4), e12640 (2019).

    Article 

    Google Scholar 

  • Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30(1), 133–141 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020).

    Article 

    Google Scholar 

  • Gerhardinger, L. C., Godoy, E. A., Jones, P. J., Sales, G. & Ferreira, B. P. Marine protected dramas: The flaws of the Brazilian national system of marine protected areas. Environ. Manag. 47(4), 630–643 (2011).

    Article 
    ADS 

    Google Scholar 

  • Oliveira, E. A., Martelli, H., Silva, A. C. S. E., Martelli, D. R. B. & Oliveira, M. C. L. Science funding crisis in Brazil and COVID-19: Deleterious impact on scientific output. Anais Acad. Bras. Ciênc. 92, 1–2 (2020).

  • Floeter, S. R., Halpern, B. S. & Ferreira, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 128(3), 391–402 (2006).

    Article 

    Google Scholar 

  • Bender, M. G., Floeter, S. R. & Hanazaki, N. Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in E astern B razil. Fish. Manag. Ecol. 20(1), 58–67 (2013).

    Article 

    Google Scholar 

  • Hoey, A. S. & Bonaldo, R. M. (eds) Biology of Parrotfishes (CRC Press, Boca Raton, 2018).

    Google Scholar 

  • Frédou, T. & Ferreira, B. P. Bathymetric trends of Northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48(5), 787–800 (2005).

    Article 

    Google Scholar 

  • Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).

    Article 

    Google Scholar 

  • Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Cons. 115(2), 213–226 (2004).

    Article 

    Google Scholar 

  • Tuya, F. et al. Effect of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense (Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fish. Res. 7(1), 24–33 (2006).

    Article 

    Google Scholar 

  • Steneck, R. S., Arnold, S. N. & Mumby, P. J. Experiment mimics fishing on parrotfish: Insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).

    Article 
    ADS 

    Google Scholar 

  • Taylor, B. M., Trip, E. D., & Choat, J. H. Dynamic demography: Investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes 69–98 (CRC Press, 2018).

  • Moura, R. L. & Francini-Filho, R. B. Reef and Shore Fishes of the Abrolhos Region, Brazil Vol. 38, 40–55 (RAP Bulletin of Biological Assessment, Washington, 2005).

    Google Scholar 

  • Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6, 191–200 (2008).

    Article 

    Google Scholar 

  • Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ 7, e7459 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pinheiro, H. T. et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 8, 172 (2021).

    Article 

    Google Scholar 

  • Correia, M. D. Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J. Mar. Biol. Assoc. U. K. 91, 659–668 (2011).

    CAS 
    Article 

    Google Scholar 

  • Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. & Sarubbo, L. A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 401 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • de Oliveira, S. et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 115, 103879 (2020).

    Article 

    Google Scholar 

  • Teixeira, L. M. P. & Creed, J. C. A decade on: An updated assessment of the status of marine non-indigenous species in Brazil. Aquat. Invasions 15(1), 30–43 (2020).

    Article 

    Google Scholar 

  • Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luiz, O. J. et al. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol. Invasions 23, 3013–3019 (2021).

    Article 

    Google Scholar 

  • Maida, M., & Ferreira, B. P. Coral reefs of Brazil: An overview. In Proceedings of the 8th International Coral Reef Symposium, Vol. 1, 263–274 (Smithsonian Tropical Research Institute Panamá, 1997).

  • Pereira, P. H. C., Macedo, C. H., Nunes, J. D. A. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais (ICMBio/MMA, 2013).

  • Hill, J. & Wilkinson, C. E. Methods for Ecological Monitoring of Coral Reefs Vol. 117 (Australian Institute of Marine Science, Townsville, 2004).

    Google Scholar 

  • Dalapicolla, J. Tutorial de modelos de distribuição de espécies: guia prático usando o MaxEnt e o ArcGIS 10. Laboratório de Mastozoologia e Biogeografia. Universidade Federal do Espírito Santo, Vitória. Retrieved, 6 (2016).

  • Phillips, S. J., Dudík, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine learning, Vol. 83 (2004).

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).

    Article 

    Google Scholar 

  • Anderson, R. P. & Martınez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 116(2), 167–179 (2004).

    Article 

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).

    Article 

    Google Scholar 

  • Rodrigues, E. D. C., Rodrigues, F. A., Rocha, R. L. A. & Corrêa, P. L. P. An adaptive maximum entropy approach for modeling of species distribution. Mem. WTA 108–117 (2010).

  • Rodrigues, E. S. D. C., Rodrigues, F. A., Ricardo, L. D. A., Corrêa, P. L. & Giannini, T. C. Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environ. Sci. 2, 990–1001 (2010).

    Article 

    Google Scholar 

  • Hattab, T. et al. The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10), e76430 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 41(5), 726–736 (2018).

    Article 

    Google Scholar 

  • Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).

    Article 

    Google Scholar 

  • Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101(4), 1035–1048 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, C. M., Lee, D. S., Kwon, T. S., Athar, M. & Park, Y. S. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12(3), 229 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Possingham, H., Ball, I. & Andelman, S. Mathematical methods for identifying representative reserve networks. In Quantitative methods for conservation biology 291–306 (Springer, New York, 2000).

  • Terrell, G. R. & Scott, D. W. Variable kernel density estimation.  Ann. Stat. 20(3), 1236–1265 (1992).

  • O’Brien, S. H., Webb, A., Brewer, M. J. & Reid, J. B. Use of kernel density estimation and maximum curvature to set Marine Protected Area boundaries: Identifying a Special Protection Area for wintering red-throated divers in the UK. Biol. Conserv. 156, 15–21 (2012).

    Article 

    Google Scholar 

  • Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Organic and in-organic fertilizers effects on the performance of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) grown on soilless medium

    Four researchers with MIT ties earn Schmidt Science Fellowships