in

Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker

  • Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).

    Article 

    Google Scholar 

  • Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).

    Article 

    Google Scholar 

  • Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).

    Book 

    Google Scholar 

  • Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).

    Article 

    Google Scholar 

  • Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).

    Article 

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).

    Google Scholar 

  • Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).

    Google Scholar 

  • Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).

    Google Scholar 

  • Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).

    Article 

    Google Scholar 

  • Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).

    Article 

    Google Scholar 

  • Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).

    Article 

    Google Scholar 

  • Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).

    Article 

    Google Scholar 

  • Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).

    Article 

    Google Scholar 

  • Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).

    Google Scholar 

  • Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).

    Article 

    Google Scholar 

  • Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).

    Article 

    Google Scholar 

  • Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).

    Article 

    Google Scholar 

  • Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).

    Article 

    Google Scholar 

  • Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).

    Article 

    Google Scholar 

  • Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).

    Article 

    Google Scholar 

  • Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).

    Article 

    Google Scholar 

  • Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.

  • Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).

    Google Scholar 

  • Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).

    Article 

    Google Scholar 

  • Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).

    Article 

    Google Scholar 

  • Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).

    Google Scholar 

  • Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).

    Article 

    Google Scholar 

  • Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).

    Article 

    Google Scholar 

  • Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).

    Article 

    Google Scholar 

  • Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).

    Article 

    Google Scholar 

  • Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).

    Google Scholar 

  • Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.

  • Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).

    Google Scholar 

  • Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).

    Google Scholar 

  • Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).

    Google Scholar 

  • Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).

    Article 

    Google Scholar 

  • Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).

    Article 

    Google Scholar 

  • Batschelet, E. Circular statistics in biology (Academic Press, 1981).

    MATH 

    Google Scholar 

  • Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).

  • Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).

  • R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).

    Google Scholar 

  • Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).

    Article 

    Google Scholar 

  • Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).

    Google Scholar 

  • Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).

    Google Scholar 

  • Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.

  • Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).

    Book 

    Google Scholar 

  • Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).

    Google Scholar 

  • Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).

    Article 

    Google Scholar 

  • Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).

    Article 

    Google Scholar 

  • Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).

    Google Scholar 

  • Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).

    Article 

    Google Scholar 

  • Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).

    Article 

    Google Scholar 

  • DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).

    Google Scholar 

  • Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).

    Google Scholar 

  • Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

    A 26-year time series of mortality and growth of the Pacific oyster C. gigas recorded along French coasts