in

Estimates of regeneration potential in the Pannonian sand region help prioritize ecological restoration interventions

  • Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3831673 (IPBES Secretariat, 2019).

  • UNEP/FAO. The UN Decade on Ecosystem Restoration 2021-2030 “Prevent, halt and reverse the degradation of ecosystems worldwide.” https://www.decadeonrestoration.org/ (2020).

  • Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 36, 1 (2021).

    Google Scholar 

  • Tolvanen, A. & Aronson, J. Ecological reastoration, ecosystem services, and land use: a European perspective. Ecol. Soc. 21, 47 (2016).

    Google Scholar 

  • Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Temperton, V. M. et al. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).

    Google Scholar 

  • Prach, K. & Hobbs, R. J. Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor. Ecol. 16, 363–366 (2008).

    Google Scholar 

  • Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2019).

    Google Scholar 

  • Gilby, B. L. et al. Applying systematic conservation planning to improve the allocation of restoration actions at multiple spatial scales. Restor. Ecol. 29, e13403 (2021).

    Google Scholar 

  • Erdős, L. et al. The edge of two worlds: a new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21, 345–362 (2018).

    Google Scholar 

  • Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands. Lessons learnt from the distant and recent past. Biol. Conserv. 104, 361–376 (2022).

    Google Scholar 

  • Wesche, K. et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).

    Google Scholar 

  • Butaye, J., Dries, A. & Honnay, O. Conservation and restoration of calcareous grasslands: a concise review of the effects of fragmentation and management on plant species. Biotechnol. Agron. Soc. Environ. 9, 111–118 (2005).

    Google Scholar 

  • Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    PubMed 

    Google Scholar 

  • Knight, M. L. & Overbeck, G. E. How much does is cost to restore a grassland? Restor. Ecol. 29, e13463 (2021).

    Google Scholar 

  • Albert, Á.-J. et al. Trait-based analysis of spontaneous grassland recovery in sandy old-fields. Appl. Veg. Sci. 17, 214–224 (2014).

    Google Scholar 

  • Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Google Scholar 

  • Seregélyes, T., Molnár, Z. S., Csomós, Á. & Bölöni, J. Regeneration potential of the Hungarian (semi)-natural habitats I. Concepts and basic data of the MÉTA database. Acta Bot. Hung. 50, 229–248 (2008).

    Google Scholar 

  • Käyhkö, N. & Skånes, H. Change trajectories and key biotopes – Assessing landscape dynamics and sustainability. Landsc. Urban Plan 75, 300–321 (2006).

    Google Scholar 

  • Käyhkö, N. & Skånes, H. Retrospective land cover/land use change trajectories as drivers behind the local distribution and abundance patterns of oaks in south-western Finland. Landsc. Urban Plan 88, 12–22 (2008).

    Google Scholar 

  • Swetnam, R. D. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landsc. Urban Plan 81, 91–103 (2007).

    Google Scholar 

  • Ruiz, J. & Domon, G. 2009. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: case study in a watershed of southern Québec, Canada. Landsc. Ecol. 24, 419–432 (2009).

    Google Scholar 

  • Eremiášová, R. & Skokanová, H. Land use changes (recorded in old maps) and delimitation of the most stable areas from the perspective of land use in the Kašperské Hory region. Landsc. Ecol. 88, 20–34 (2009).

    Google Scholar 

  • Frondoni, R. B. M. & Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan 100, 117–128 (2011).

    Google Scholar 

  • Biró, M., Szitár, K., Horváth, F., Bagi, I. & Molnár, Z. S. Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales. Community Ecol. 14, 219–230 (2013).

    Google Scholar 

  • Molnár, Z. S, Biró, M., Bartha, S. & Fekete, G. in Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & van Staalduinen, M. A.) Ch. 7 (Springer, 2012).

  • Mezősi, G. in The Physical Geography of Hungary. Geography of the Physical Environment (ed. Mezősi, G) Ch. 11 (Springer, 2017).

  • Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32, 660–671 (2018).

    PubMed 

    Google Scholar 

  • Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2, 305–316 (2020).

    Google Scholar 

  • Benton, T. G., Bieg, C., Harwatt, H., Pudasaini, R. & Wellesley, L. Food system impacts on biodiversity loss. Three levers for food system transformation in support of nature. Chatham House, the Royal Institute of International Affairs. ISBN: 978 1 78413 433 4 (2021).

  • Kuemmerle, T. et al. Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 11, 614 (2008).

    Google Scholar 

  • Feranec, J. et al. Inventory of major landscape changes in the Czech Republic, Hungary, Romania and Slovak Republic 1970s – 1990s. Int. J. Appl. Earth Observ. Geoinf. 2, 129–139 (2000).

    Google Scholar 

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    PubMed 

    Google Scholar 

  • Csákvári, E. et al. Conservation biology research priorities for 2050: a Central-Eastern European perspective. Biol. Conserv. 264, 109396 (2021).

    Google Scholar 

  • Molnár, Z. S., Bölöni, J. & Horváth, F. Threatening factors encountered: actual endangerment of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 199–217 (2008).

    Google Scholar 

  • Király, G., Molnár, ZS., Bölöni, J., Csiky, J. & Vojtkó, A. Magyarország földrajzi kistájainak növényzete (in Hungarian). MTA ÖBKI, Vácrátót, 248 (2008).

  • Botta-Dukát, Z. Invasion of alien species to Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 219–227 (2008).

    Google Scholar 

  • Csákvári, E., Bede-Fazekas, Á., Horváth, F., Molnár, Z. & Halassy, M. Do environmental predictors affect the regeneration capacity of sandy habitats? A country-wide survey from Hungary. Glob. Ecol. Conserv. 27, e01547 (2021).

    Google Scholar 

  • Somodi, I. et al. Implementation and application of multiple potential natural vegetation models–a case study of Hungary. J. Veg. Sci. 28, 1260–1269 (2017).

    Google Scholar 

  • Bölöni, J., Molnár, Zs. & Kun, A. (Eds.), Magyarország élőhelyei. A hazai vegetációtípusok leírása és határozója (in Hungarian) (Habitats – Description and Identification of Vegetation Types of Hungary, ÁNÉR 2011). MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, pp. 439. ISBN 978-963-8391-51 (2011).

  • Choi, Y. D. et al. Ecological restoration for future sustainability in a changing environment. Ecoscience 15, 53–64 (2008).

    CAS 

    Google Scholar 

  • Valkó, O. et al. Abandonment of croplands: problem or chance for grassland restoration? Case studies from Hungary. Ecosyst. Health Sustain. 2, e01208 (2016).

    Google Scholar 

  • Csecserits, A. et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric. Ecosyst. Environ. 226, 88–98 (2016).

    Google Scholar 

  • Pyšek P. & Richardson D. M. in Biological Invasions. Ecological Studies (Analysis and Synthesis) (ed. Nentwig, W) Ch. 7 (Springer, 2008).

  • Reis, B. P. et al. The long-term effect of initial restoration intervention, landscape composition, and time on the progress of Pannonic sand grassland restoration. Landsc. Ecol. Eng. https://doi.org/10.1007/s11355-022-00512-y (2022).

    Article 

    Google Scholar 

  • Ruprecht, E. Successfully recovered grassland: a promising example from Romanian old‐fields. Restor. Ecol. 14, 473–480 (2006).

    Google Scholar 

  • Török, P. et al. Restoring grassland biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 143, 3 (2010).

    Google Scholar 

  • Török, P., Vida, E., Deák, B., Lengyel, S. & Tóthmérész, B. Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers. Conserv. 20, 2311–2332 (2011).

    Google Scholar 

  • Prach, K., Jongepierová, I., Řehounková, K. & Fajmon, K. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agric. Ecosyst. Environ. 182, 131–136 (2014).

    Google Scholar 

  • Prach, K., Chenoweth, J. & del Moral, R. Spontaneous and assisted restoration of vegetation on the bottom of a former water reservoir, the Elwha River, Olympic National Park, WA, USA. Restor. Ecol. 27, 592–599 (2019).

    Google Scholar 

  • Török, P., Helm, A., Kiehl, K., Buisson, E. & Valkó, O. Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restor. Ecol. 26, S65–S72 (2018).

    Google Scholar 

  • Török, P., Bullock James M, J. M., Jiménez‐Alfaro, B. & Sonkoly, J. The importance of dispersal and species establishment in vegetation dynamics and resilience. J. Veg. Sci. 31, 935–942 (2020).

    Google Scholar 

  • Saura, S., Bodin, Ö. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).

    Google Scholar 

  • Kirmer, A., Baasch, A. & Tischew, S. Sowing of low and high diversity seed mixtures in ecological restoration of surface mined-land. Appl. Veg. Sci. 15, 198–207 (2012).

    Google Scholar 

  • Llumiquinga, Y. B. et al. Long-term results of initial seeding, mowing and carbon amendment on the restoration of Pannonian sand grassland on old fields. Tuxenia 41, 361–379 (2021).

    Google Scholar 

  • Edwards, A. R. et al. Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement of botanical diversity in grasslands. Biol. Conserv. 134, 372–382 (2007).

    Google Scholar 

  • Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).

    Google Scholar 

  • Bussion, E., Archibald, S., Fidelis, A. & Sudling, K. N. Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598 (2022).

    Google Scholar 

  • Csecserits, A. et al. Regeneration of sandy old-field in the forest steppe region of Hungary. Plant Biosyst. 145, 715–726 (2011).

    Google Scholar 

  • Szitár, K. et al. Az országos zöldinfrastruktúrahálózat kijelölésének módszertana többszempontú állapotértékelés alapján. (in Hungarian) (Methodology for designating the national green infrastructure network based on multi-criteria assessment). Term.észetvédelmi K.özlemények 27, 145–157 (2021).

    Google Scholar 

  • Szalai, S., Szinell, C. S. & Zoboki, J. Early warning systems for drought preparedness and drought management. In Proc. Expert Group Meeting (eds Wilhite, D. A., Sivakumar, M. V. K. & Wood, D. A.) (World Meteorological Organization, 2000).

  • Szilassi, P. et al. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 81, 252–259 (2017).

    Google Scholar 

  • Demeter, I., Makádi, M., Végső, B., Aranyos, T. J. & Posta, K. The effect of recycled plant residues on the microbial activity of typical sandy soil of the Nyírség region. In Abstract Book, 18th Alps-Adria Scientific Workshop https://doi.org/10.34116/NTI.2019.AA.13 (2019).

  • Borhidi, A. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39, 97–181 (1995).

    Google Scholar 

  • Horváth, F. et al. Flóra adatbázis 1.2. Taxonlista és attribútum-állomány (Flora database 1.2. Taxon list and attribute file). MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, ISBN 9638391197 (1995).

  • Király, G. Új Magyar Füvészkönyv. Magyarország hajtásos növényei (New Herbal Guide to the Hungarian Flora). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, Hungary, 628p. (2009).

  • Máté, A. 6260 pannon homoki gyepek. In: Haraszthy, L. (Eds.), Natura 2000 fajok és élőhelyek Magyarországon. (in Hungarian) Pro Vértes Közalapítvány, Csákvár, Hungary, pp. 817-823. ISBN: 9789630888530 (2014).

  • Molnár, Z. S. et al. Magyarországi Élőhelytérképezési Adatbázisának (MÉTA) térképezési módszertani és Adatlapkitöltési Útmutatója (AL-KÚ) 3.3 Kézirat, (Guide on the methods of MÉTA and on the completion of the MÉTA datasheets). MTA ÖBKI, Vácrátót, Hungary, 54 pp. (2003).

  • Molnár, Z. S. et al. A grid-based, satellite-image supported multi-attributed vegetation mapping method (MÉTA). Folia Geobotanica 42, 225–247 (2007).

    Google Scholar 

  • Horváth, F. et al. Fact sheet of the MÉTA database 1.2. Acta Bot. Hung. 50, 11–34 (2008).

    Google Scholar 

  • Bölöni, J., Kun, A. & Molnár, Z. S. Élőhely-ismereti Útmutató (Habitat guide). MTA ÖBKI, Vácrátót, Hungary (2003).

  • European Environment Agency. Corine Land Cover 2006 seamless vector data (Version 17). https://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3 (2013).

  • European Environment Agency. CLC2006 Technical Guidelines. Report No. 17/2007, ISNN 1725-2237 (2017).

  • ESRI ArcGIS Vers. 10.2. (Environmental System Research Institute Inc., 2013).

  • Pásztor, L. et al. Compilation of novel and renewed, goal oriented digital soil maps using geostatistical and data mining tools. Hungarian Geogr. Bull. 64, 49–64 (2015).

    Google Scholar 

  • Hijmans, R. J. raster: geographic data analysis and modeling. R package version 2.4-20, https://cran.r-project.org/web/packages/raster/index.html (2015).

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ (2019).

  • USGS. Shuttle Radar Topography Mission, 3 Arc Second scene SRTM_u03_n045e016-SRTM_ff03_n048e022, Unfilled Unfinished 2.0, Global Land Cover Facility, February 2000. College Park, MD, USA, University of Maryland (2004).

  • SRTM. SRTM Mission Summary. URL: lta.cr.usgs.gov/srtm/mission_summary (2015). [Last accesed: 2016.04.22.].

  • Szalai, S. et al. Climate of the Greater Carpathian Region. Final Technical Report. http://www.carpatclim-eu.org/ (2013).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (2002).

    Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (CRC Press, 1984).

  • Sarica, A., Cerasa, A. & Quattrone, A. Random Forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 6, 329 (2017).

    Google Scholar 

  • Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph Stat. 15, 651–674 (2006).

    Google Scholar 

  • Pebesma, E. Simple features for R: standardized support for spatial vector. Data. R. J. 10, 439–446 (2018).

    Google Scholar 

  • Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd ed. (Springer, 2013).

  • Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    Google Scholar 

  • Bölöni, J., Molnár, Z. S., Horváth, F. & Illyés, E. Naturalness-based habitat quality of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 149–159 (2008).

    Google Scholar 

  • Czúcz, B., Molnár, Z. S., Horváth, F. & Botta-Dukát, Z. The natural capital index of Hungary. Acta Bot. Hung. 50, 161–177 (2008).

    Google Scholar 


  • Source: Ecology - nature.com

    Coordinating climate and air-quality policies to improve public health

    Pesticide innovation takes top prize at Collegiate Inventors Competition