in

Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region

  • Ryther, J. H. Photosynthesis and fish production in the sea. Sci. (80-.) 166, 72–76 (1969).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Sci. (80-.). 315, 1843–1846 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edwards, K. F., Litchman, E. & Klausmeier, C. A. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. Lett. 16, 56–63 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).

  • Collins, S., Rost, B. & Rynearson, T. A. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 7, 140–155 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLOS Biol. 5, e77 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Sci. (80-.). 348, 1261605–1/11 (2015).

  • Sunagawa, S. et al. Structure and function of the global ocean microbiome. Sci. (80-.) 348, 1–10 (2015).

    Article 
    CAS 

    Google Scholar 

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).

    Article 

    Google Scholar 

  • Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. PNAS 105, 20344–20349 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Sci. (80-.) 327, 1509–1511 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mantyla, A. W., Venrick, E. L. & Hayward, T. L. Primary production and chlorophyll relationships, derived from ten year of CalCOFI measurements. Calif. Cooperative Ocean. Fish. Investig. Rep. 36, 159–166 (1995).

    Google Scholar 

  • Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep. Res. Part II Top. Stud. Oceanogr. https://doi.org/10.1016/S0967-0645(98)80010-6 (1998).

    Article 

    Google Scholar 

  • Venrick, E. L. Floral patterns in the California Current: The coastal-offshore boundary zone. J. Mar. Res. 67, 89–111 (2009).

    Article 

    Google Scholar 

  • Powell, J. R. & Ohman, M. D. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 79–90 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Taylor, A. G., Landry, M. R., Selph, K. E. & Wokuluk, J. J. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep. Res. Part II Top. Stud. Oceanogr. 112, 117–128 (2015).

  • Catlett, D. et al. Diagnosing seasonal to multi-decadal phytoplankton group dynamics in a highly productive coastal ecosystem. Prog. Oceanogr. 197, 102637 (2021).

    Article 

    Google Scholar 

  • Lilly, L. E. & Ohman, M. D. CCE IV: El Niño-related zooplankton variability in the southern California Current System. Deep. Res. Part I Oceanogr. Res. Pap. 140, 36–51 (2018).

    ADS 
    Article 

    Google Scholar 

  • Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74 (2006).

    ADS 
    Article 

    Google Scholar 

  • Wang, Z. et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ. Microbiol. 1462–2920.14734. https://doi.org/10.1111/1462-2920.14734 (2019).

  • Wang, Y. et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China. Limnol. Oceanogr. 65, S161–S179 (2020).

  • Ibarbalz, F. M. et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 1084–1097. https://doi.org/10.1016/j.cell.2019.10.008 (2019).

  • Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep. Res. Part II Top. Stud. Oceanogr. 43, 129–156 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep. Res. Part II Top. Stud. Oceanogr. 48, 1405–1447 (2015).

    ADS 
    Article 

    Google Scholar 

  • Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).

  • Zhu, Z. et al. Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae 67, 36–43 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mcclatchie, S. et al. State of the California Current 2015–16: Comparisons with the 1997–98 El Niño. Calif. Cooperative Ocean. Fish. Investig. Rep. 57, (2016).

  • Walker, H. J. Jr et al. Unusual occurrences of fishes in the Southern California Current System during the warm water period of 2014–2018. Estuar. Coast. Shelf Sci. 236, 106634 (2020).

    Article 

    Google Scholar 

  • Kahru, M., Jacox, M. G. & Ohman, M. D. CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014–2016 northeast Pacific warm anomalies. Deep. Res. Part I Oceanogr. Res. Pap. 140, 4–13 (2018).

    ADS 
    Article 

    Google Scholar 

  • Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS 
    Article 

    Google Scholar 

  • Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kohonen, T. Exploration of very large databases by self-organizing maps. IEEE Int. Conf. Neural Networks – Conf. Proc. 1, (1997).

  • Istvánovics, V. Eutrophication of Lakes and Reservoirs. Encycl. Inl. Waters 157–165 https://doi.org/10.1016/B978-012370626-3.00141-1 (2009).

  • Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Oceanogr. Monaco 19, 457–475 (1999).

    Google Scholar 

  • Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles 14, (2000).

  • Grover, J. P. Resource Competition in a Variable Environment: Phytoplankton Growing According to Monod’s Model. Am. Nat. 136, 771–789 (1990).

    Article 

    Google Scholar 

  • Benincá, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Williams, R. G. & Follows, M. J. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Book (2011).

  • Lindegren, M., Checkley, D. M., Ohman, M. D., Koslow, J. A. & Goericke, R. Resilience and stability of a pelagic marine ecosystem. Proc. R. Soc. B Biol. Sci. 283, (2016).

  • Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 1–10 https://doi.org/10.1038/ncomms5299 (2014).

  • Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity-biodiversity relationship. Nature 416, 427–430 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast. J. Geophys. Res. Ocean. 123, 7332–7350 (2018).

    ADS 
    Article 

    Google Scholar 

  • Zaba, K. D. & Rudnick, D. L. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett. 43, 1241–1248 (2016).

    ADS 
    Article 

    Google Scholar 

  • Weber, E. D. et al. State of the California Current 2019–2020: Back to the Future With Marine Heatwaves? Front. Mar. Sci. 8, (2021).

  • Closset, I. et al. Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California Current System. Limnol. Oceanogr. 1–16. https://doi.org/10.1002/lno.11705 (2021).

  • Kenitz, K. M. et al. Environmental drivers of population variability in colony-forming marine diatoms. Limnol. Oceanogr. 65, 2515–2528 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mullin, M. M. Biomasses of large-celled phytoplankton and their relation to the nitricline and grazing in the California current system off Southern California, 1994–1996. Calif. Cooperative Ocean. Fish. Investig. Rep. 39, 117–123 (1998).

    Google Scholar 

  • Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS 105, 1965–1970 (2007).

    ADS 
    Article 

    Google Scholar 

  • Grzymski, J. J. & Dussaq, A. M. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 6, 71–80 (2012).

  • Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Ocean. Acta 1, (1978).

  • Falkowski, P. G. & Oliver, M. J. Mix and match: How climate selects phytoplankton. Nat. Rev. Microbiol. 5, 813–819 (2007).

  • Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

  • Phoma, B. S. & Makhalanyane, T. P. Depth-dependent variables shape community structure and functionality in the Prince Edward Islands. Microb. Ecol. 81, 396–409 (2021).

  • Kahru, M. & Mitchell, B. G. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current. J. Geophys. Res. Ocean. 106, 2517–2529 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Barth, A., Walter, R. K., Robbins, I. & Pasulka, A. Seasonal and interannual variability of phytoplankton abundance and community composition on the Central Coast of California. Mar. Ecol. Prog. Ser. 637, (2020).

  • Powell, J. R. & Ohman, M. D. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System. Prog. Oceanogr. 134, 77–92 (2015).

    ADS 
    Article 

    Google Scholar 

  • Taylor, A. G. & Landry, M. R. Phytoplankton biomass and size structure across trophic gradients in the southern California Current and adjacent ocean ecosystems. Mar. Ecol. Prog. Ser. 592, 1–17 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, 1–15 (2009).

    Article 
    CAS 

    Google Scholar 

  • D’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Lévy, M. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. U. S. A. 107, 18366–18370 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clayton, S., Dutkiewicz, S., Jahn, O. & Follows, M. J. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol. Oceanogr. Fluids Environ. 3, 182–197 (2013).

    Article 

    Google Scholar 

  • Moisan, T. A., Rufty, K. M., Moisan, J. R. & Linkswiler, M. A. Satellite observations of phytoplankton functional type spatial distributions, phenology, diversity, and ecotones. Front. Mar. Sci. 4, 1–24 (2017).

    Article 

    Google Scholar 

  • Combes, V. et al. Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics. Prog. Oceanogr. 109, 78–89 (2013).

    ADS 
    Article 

    Google Scholar 

  • Chenillat, F., Rivière, P., Capet, X., Franks, P. J. S. & Blanke, B. California coastal upwelling onset variability: cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE 8, (2013).

  • Chenillat, F., Franks, P. J. S. & Combes, V. Biogeochemical properties of eddies in the California Current System. Geophys. Res. Lett. 43, 5812–5820 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).

    ADS 
    Article 

    Google Scholar 

  • Wells, B. K. et al. State of the California Current 2016–17: Still anything but ‘normal’ in the north. Calif. Cooperative Ocean. Fish. Investig. Rep. 58 (2017).

  • Thompson, A. R. et al. State of the California Current 2017–18: Still not quite normal in the north and getting interesting in the south. Calif. Cooperative Ocean. Fish. Investig. Rep. 59 (2018).

  • Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).

  • Bograd, S. J., Schroeder, I. D. & Jacox, M. G. A water mass history of the Southern California current system. Geophys. Res. Lett. 46, 6690–6698 (2019).

    ADS 
    Article 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18 (2016).

  • Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4, (2009).

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17, (2011).

  • Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W. & A, A. J. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6 (2018).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12 (2011).

  • Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35 (2007).

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41 (2013).

  • McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10 (2014).

  • Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V. & Egozcue, J. J. It’s all relative: analyzing microbiome data as compositions. Ann. Epidemiol. 26 (2016).

  • Cameron, E. S., Schmidt, P. J., Tremblay, B. J. M., Emelko, M. B. & Müller, K. M. To rarefy or not to rarefy: Enhancing microbial community analysis through next-generation sequencing. bioRxiv. https://doi.org/10.1101/2020.09.09.290049 (2020).

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. (2020).

  • Bowman, J. S., Amaral-zettler, L. A., Rich, J. J., Luria, C. M. & Ducklow, H. W. Bacterial community segmentation facilitates the prediction of ecosystem function along the coast of the western Antarctic Peninsula. Nat. Publ. Gr. 11, 1460–1471 (2017).

    Google Scholar 

  • Boelaert, J., Bendhaiba, L., Olteanu, M. & Villa-Vialaneix, N. SOMbrero: An R package for numeric and non-numeric self-organizing maps. Adv. Intell. Syst. Comput 295, 219–228 (2014).

    Google Scholar 

  • Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 
    Article 

    Google Scholar 

  • James, C. C. et al. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. https://doi.org/10.5281/zenodo.6359865 (2022).

  • Legendre, P. & Legendre, L. Numerical ecology (Elsevier, 2012).

  • Fast and accurate population admixture inference from genotype data from a few microsatellites to millions of SNPs

    MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna