in

Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region

  • Ryther, J. H. Photosynthesis and fish production in the sea. Sci. (80-.) 166, 72–76 (1969).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Sci. (80-.). 315, 1843–1846 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edwards, K. F., Litchman, E. & Klausmeier, C. A. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol. Lett. 16, 56–63 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).

  • Collins, S., Rost, B. & Rynearson, T. A. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 7, 140–155 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLOS Biol. 5, e77 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Sci. (80-.). 348, 1261605–1/11 (2015).

  • Sunagawa, S. et al. Structure and function of the global ocean microbiome. Sci. (80-.) 348, 1–10 (2015).

    Article 
    CAS 

    Google Scholar 

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. 105, 7774–7778 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).

    Article 

    Google Scholar 

  • Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. PNAS 105, 20344–20349 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Sci. (80-.) 327, 1509–1511 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mantyla, A. W., Venrick, E. L. & Hayward, T. L. Primary production and chlorophyll relationships, derived from ten year of CalCOFI measurements. Calif. Cooperative Ocean. Fish. Investig. Rep. 36, 159–166 (1995).

    Google Scholar 

  • Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep. Res. Part II Top. Stud. Oceanogr. https://doi.org/10.1016/S0967-0645(98)80010-6 (1998).

    Article 

    Google Scholar 

  • Venrick, E. L. Floral patterns in the California Current: The coastal-offshore boundary zone. J. Mar. Res. 67, 89–111 (2009).

    Article 

    Google Scholar 

  • Powell, J. R. & Ohman, M. D. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 79–90 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Taylor, A. G., Landry, M. R., Selph, K. E. & Wokuluk, J. J. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep. Res. Part II Top. Stud. Oceanogr. 112, 117–128 (2015).

  • Catlett, D. et al. Diagnosing seasonal to multi-decadal phytoplankton group dynamics in a highly productive coastal ecosystem. Prog. Oceanogr. 197, 102637 (2021).

    Article 

    Google Scholar 

  • Lilly, L. E. & Ohman, M. D. CCE IV: El Niño-related zooplankton variability in the southern California Current System. Deep. Res. Part I Oceanogr. Res. Pap. 140, 36–51 (2018).

    ADS 
    Article 

    Google Scholar 

  • Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74 (2006).

    ADS 
    Article 

    Google Scholar 

  • Wang, Z. et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ. Microbiol. 1462–2920.14734. https://doi.org/10.1111/1462-2920.14734 (2019).

  • Wang, Y. et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China. Limnol. Oceanogr. 65, S161–S179 (2020).

  • Ibarbalz, F. M. et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 1084–1097. https://doi.org/10.1016/j.cell.2019.10.008 (2019).

  • Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep. Res. Part II Top. Stud. Oceanogr. 43, 129–156 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): A decade-scale look at ocean biology and biogeochemistry Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep. Res. Part II Top. Stud. Oceanogr. 48, 1405–1447 (2015).

    ADS 
    Article 

    Google Scholar 

  • Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).

  • Zhu, Z. et al. Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae 67, 36–43 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mcclatchie, S. et al. State of the California Current 2015–16: Comparisons with the 1997–98 El Niño. Calif. Cooperative Ocean. Fish. Investig. Rep. 57, (2016).

  • Walker, H. J. Jr et al. Unusual occurrences of fishes in the Southern California Current System during the warm water period of 2014–2018. Estuar. Coast. Shelf Sci. 236, 106634 (2020).

    Article 

    Google Scholar 

  • Kahru, M., Jacox, M. G. & Ohman, M. D. CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014–2016 northeast Pacific warm anomalies. Deep. Res. Part I Oceanogr. Res. Pap. 140, 4–13 (2018).

    ADS 
    Article 

    Google Scholar 

  • Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS 
    Article 

    Google Scholar 

  • Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kohonen, T. Exploration of very large databases by self-organizing maps. IEEE Int. Conf. Neural Networks – Conf. Proc. 1, (1997).

  • Istvánovics, V. Eutrophication of Lakes and Reservoirs. Encycl. Inl. Waters 157–165 https://doi.org/10.1016/B978-012370626-3.00141-1 (2009).

  • Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Oceanogr. Monaco 19, 457–475 (1999).

    Google Scholar 

  • Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles 14, (2000).

  • Grover, J. P. Resource Competition in a Variable Environment: Phytoplankton Growing According to Monod’s Model. Am. Nat. 136, 771–789 (1990).

    Article 

    Google Scholar 

  • Benincá, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Williams, R. G. & Follows, M. J. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Book (2011).

  • Lindegren, M., Checkley, D. M., Ohman, M. D., Koslow, J. A. & Goericke, R. Resilience and stability of a pelagic marine ecosystem. Proc. R. Soc. B Biol. Sci. 283, (2016).

  • Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 1–10 https://doi.org/10.1038/ncomms5299 (2014).

  • Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity-biodiversity relationship. Nature 416, 427–430 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast. J. Geophys. Res. Ocean. 123, 7332–7350 (2018).

    ADS 
    Article 

    Google Scholar 

  • Zaba, K. D. & Rudnick, D. L. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys. Res. Lett. 43, 1241–1248 (2016).

    ADS 
    Article 

    Google Scholar 

  • Weber, E. D. et al. State of the California Current 2019–2020: Back to the Future With Marine Heatwaves? Front. Mar. Sci. 8, (2021).

  • Closset, I. et al. Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California Current System. Limnol. Oceanogr. 1–16. https://doi.org/10.1002/lno.11705 (2021).

  • Kenitz, K. M. et al. Environmental drivers of population variability in colony-forming marine diatoms. Limnol. Oceanogr. 65, 2515–2528 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mullin, M. M. Biomasses of large-celled phytoplankton and their relation to the nitricline and grazing in the California current system off Southern California, 1994–1996. Calif. Cooperative Ocean. Fish. Investig. Rep. 39, 117–123 (1998).

    Google Scholar 

  • Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS 105, 1965–1970 (2007).

    ADS 
    Article 

    Google Scholar 

  • Grzymski, J. J. & Dussaq, A. M. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 6, 71–80 (2012).

  • Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Ocean. Acta 1, (1978).

  • Falkowski, P. G. & Oliver, M. J. Mix and match: How climate selects phytoplankton. Nat. Rev. Microbiol. 5, 813–819 (2007).

  • Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

  • Phoma, B. S. & Makhalanyane, T. P. Depth-dependent variables shape community structure and functionality in the Prince Edward Islands. Microb. Ecol. 81, 396–409 (2021).

  • Kahru, M. & Mitchell, B. G. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current. J. Geophys. Res. Ocean. 106, 2517–2529 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Barth, A., Walter, R. K., Robbins, I. & Pasulka, A. Seasonal and interannual variability of phytoplankton abundance and community composition on the Central Coast of California. Mar. Ecol. Prog. Ser. 637, (2020).

  • Powell, J. R. & Ohman, M. D. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System. Prog. Oceanogr. 134, 77–92 (2015).

    ADS 
    Article 

    Google Scholar 

  • Taylor, A. G. & Landry, M. R. Phytoplankton biomass and size structure across trophic gradients in the southern California Current and adjacent ocean ecosystems. Mar. Ecol. Prog. Ser. 592, 1–17 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, 1–15 (2009).

    Article 
    CAS 

    Google Scholar 

  • D’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Lévy, M. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. U. S. A. 107, 18366–18370 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clayton, S., Dutkiewicz, S., Jahn, O. & Follows, M. J. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol. Oceanogr. Fluids Environ. 3, 182–197 (2013).

    Article 

    Google Scholar 

  • Moisan, T. A., Rufty, K. M., Moisan, J. R. & Linkswiler, M. A. Satellite observations of phytoplankton functional type spatial distributions, phenology, diversity, and ecotones. Front. Mar. Sci. 4, 1–24 (2017).

    Article 

    Google Scholar 

  • Combes, V. et al. Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics. Prog. Oceanogr. 109, 78–89 (2013).

    ADS 
    Article 

    Google Scholar 

  • Chenillat, F., Rivière, P., Capet, X., Franks, P. J. S. & Blanke, B. California coastal upwelling onset variability: cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE 8, (2013).

  • Chenillat, F., Franks, P. J. S. & Combes, V. Biogeochemical properties of eddies in the California Current System. Geophys. Res. Lett. 43, 5812–5820 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).

    ADS 
    Article 

    Google Scholar 

  • Wells, B. K. et al. State of the California Current 2016–17: Still anything but ‘normal’ in the north. Calif. Cooperative Ocean. Fish. Investig. Rep. 58 (2017).

  • Thompson, A. R. et al. State of the California Current 2017–18: Still not quite normal in the north and getting interesting in the south. Calif. Cooperative Ocean. Fish. Investig. Rep. 59 (2018).

  • Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422 (2017).

  • Bograd, S. J., Schroeder, I. D. & Jacox, M. G. A water mass history of the Southern California current system. Geophys. Res. Lett. 46, 6690–6698 (2019).

    ADS 
    Article 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18 (2016).

  • Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4, (2009).

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17, (2011).

  • Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W. & A, A. J. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6 (2018).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12 (2011).

  • Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35 (2007).

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41 (2013).

  • McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10 (2014).

  • Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V. & Egozcue, J. J. It’s all relative: analyzing microbiome data as compositions. Ann. Epidemiol. 26 (2016).

  • Cameron, E. S., Schmidt, P. J., Tremblay, B. J. M., Emelko, M. B. & Müller, K. M. To rarefy or not to rarefy: Enhancing microbial community analysis through next-generation sequencing. bioRxiv. https://doi.org/10.1101/2020.09.09.290049 (2020).

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. (2020).

  • Bowman, J. S., Amaral-zettler, L. A., Rich, J. J., Luria, C. M. & Ducklow, H. W. Bacterial community segmentation facilitates the prediction of ecosystem function along the coast of the western Antarctic Peninsula. Nat. Publ. Gr. 11, 1460–1471 (2017).

    Google Scholar 

  • Boelaert, J., Bendhaiba, L., Olteanu, M. & Villa-Vialaneix, N. SOMbrero: An R package for numeric and non-numeric self-organizing maps. Adv. Intell. Syst. Comput 295, 219–228 (2014).

    Google Scholar 

  • Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 
    Article 

    Google Scholar 

  • James, C. C. et al. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. https://doi.org/10.5281/zenodo.6359865 (2022).

  • Legendre, P. & Legendre, L. Numerical ecology (Elsevier, 2012).


  • Source: Ecology - nature.com

    Absent legislative victory, the president can still meet US climate goals

    Spatiotemporal variation characteristics of livestock manure nutrient in the soil environment of the Yangtze River Delta from 1980 to 2018