in

Investigating weighted fishing hooks for seabird bycatch mitigation

  • Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183. https://doi.org/10.1016/j.biocon.2016.06.017 (2016).

    Article 

    Google Scholar 

  • Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537. https://doi.org/10.1016/j.biocon.2019.06.033 (2019).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2021-1, www.iucnredlist.org, ISSN 2307-8235. (International Union for the Conservation of Nature, 2021).

  • Brothers, N., Cooper, J. & Løkkeborg, S. The Incidental Catch of Seabirds by Longline Fisheries: Worldwide Review and Technical Guidelines for Mitigation. FAO Fisheries Circular No. 937. (Food and Agriculture Organization of the United Nations, 1999)

  • Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49. https://doi.org/10.1111/j.1467-2679.2005.00175.x (2005).

    Article 

    Google Scholar 

  • Løkkeborg, S. Best practices to mitigate seabird by—catch in longline, trawl and gillnet fisheries—efficiency and practical applicability. Mar. Ecol. Prog. Ser. 435, 285–303. https://doi.org/10.3354/meps09227 (2011).

    ADS 
    Article 

    Google Scholar 

  • Gilman, E., Chaloupka, M., Peschon, J. & Ellgen, S. Risk factors for seabird bycatch in a pelagic longline tuna fishery. PLoS One 11, e0155477 (2016).

    Article 

    Google Scholar 

  • Gilman, E., Kobayashi, D. & Chaloupka, M. Reducing seabird bycatch in the Hawaii longline tuna fishery. Endanger. Species Res. 5, 309–323. https://doi.org/10.3354/esr00133 (2008).

    Article 

    Google Scholar 

  • WPRFMC. Annual Stock Assessment and Fishery Evaluation Report for U.S. Pacific Island Pelagic Fisheries Ecosystem Plan 2019. (Western Pacific Regional Fishery Management Council, Honolulu, 2020).

  • Wren, J., Shaffer, S. & Polovina, J. Variations in black-footed albatross sightings in a North Pacific transition area due to changes in fleet dynamics and oceanography 2006–2017. Deep. Sea. Res. Part II Top. Stud. Oceanogr. 169–170, 104605. https://doi.org/10.1016/j.dsr2.2019.06.013 (2019).

    Article 

    Google Scholar 

  • NMFS. Seabird Interactions and Mitigation Efforts in Hawaii Longline Fisheries. 2019 Annual Report. (Pacific Islands Regional Office, National Marine Fisheries Service, 2021).

  • Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish. Biol. Fisher. 27, 881–908. https://doi.org/10.1007/s11160-017-9478-x (2017).

    Article 

    Google Scholar 

  • ACAP. ACAP Review and Best Practice Advice for Reducing the Impact of Pelagic Longline Fisheries on Seabirds. (Agreement on the Conservation of Albatrosses and Petrels, 2019).

  • NMFS. Fisheries off west coast states and in the western Pacific; pelagic fisheries; additional measures to reduce the incidental catch of seabirds in the Hawaii pelagic longline fishery. US National Marine Fisheries Service. Fed. Regist. 70, 75075–77508 (2005).

    Google Scholar 

  • Robertson, G., Candy, S. & Hall, S. New branch line weighting regimes to reduce the risk of seabird mortality in pelagic longline fisheries without affecting fish catch. Aquat. Conserv. 23, 885–900. https://doi.org/10.1002/aqc.2346 (2013).

    Article 

    Google Scholar 

  • Melvin, E., Guy, T. & Read, L. Reducing seabird bycatch in the South African tuna fishery using bird-scaring lines, branch line weighting and nighttime setting of hooks. Fish. Res. 147, 72–82 (2013).

    Article 

    Google Scholar 

  • Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).

    Article 

    Google Scholar 

  • Santos, R. et al. Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery. Aquat. Conserv. 29, 442–449. https://doi.org/10.1002/aqc.3002 (2019).

    Article 

    Google Scholar 

  • Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS One 9, e84499. https://doi.org/10.1371/journal.pone.0084499 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brothers, N. Incidence of Live Bird Haul Capture in Pelagic Longline Fisheries. Examination and Comparison of Live Bird Haul Captures in Fisheries Other Than the Hawaii Shallow Set Fishery Agreement on the Conservation of Albatrosses and Petrels. SBWG7 Doc 18. (Agreement on the Conservation of Albatrosses and Petrels, 2016).

  • Jiminez, S., Domingo, A., Forselledo, R., Sullivan, B. & Yates, O. Mitigating bycatch of threatened seabirds: The effectiveness of branch line weighting in pelagic longline fisheries. Anim. Conserv. 22, 376–385. https://doi.org/10.1111/acv.12472 (2019).

    Article 

    Google Scholar 

  • Bentley, L., Kato, A., Ropert-Coudert, Y., Manica, A. & Phillips, R. Diving behaviour of albatrosses: Implications for foraging ecology and bycatch susceptibility. Mar. Biol. 168, 36. https://doi.org/10.1007/s00227-021-03841-y (2021).

    Article 

    Google Scholar 

  • Prince, P., Huin, N. & Weimerskirch, H. Diving depths of albatrosses. Antarct. Sci. 6, 353–354. https://doi.org/10.1017/S0954102094000532 (1994).

    ADS 
    Article 

    Google Scholar 

  • Kazama, K., Harada, T., Deguchi, T., Suzuki, H. & Watanuki, Y. Foraging behavior of black-footed albatross Phoebastria nigripes rearing chicks on the Ogasawara Islands. Ornithol. Sci. 18, 27–37 (2019).

    Article 

    Google Scholar 

  • Jiminez, S., Domingo, A., Abreu, M. & Brazeiro, A. Bycatch susceptibility in pelagic longline fisheries: Are albatrosses affected by the diving behaviour of medium-sized petrels?. Aquat. Conserv. 22, 436–445. https://doi.org/10.1002/aqc.2242 (2012).

    Article 

    Google Scholar 

  • Barrington, J., Robertson, G. & Candy, S. Categorising Branchline Weighting for Pelagic Longline Fishing According to Sink Rate. ACAP-SBWG7-Doc7. (Agreement on the Conservation of Albatrosses and Petrels, 2016).

  • NOAA. Endangered and threatened wildlife and plants: Listing the oceanic whitetip shark as threatened under the Endangered Species Act. Fed. Regist. 83, 4153–4165 (2018).

    Google Scholar 

  • WPRFMC. Council Adopts Oceanic Whitetip Shark Protections for Hawaii and American Samoa Longline Fisheries. (Western Pacific Regional Fishery Management Council, 2021).

  • Pierre, J., Goad, D. & Abraham, E. Novel Approaches to Line-Weighting in New Zealand’s Inshore Surface-Longline Fishery. (Dragonfly Data Science, 2015).

  • Rawlinson, N., et al. The Relative Safety of Weighted Branchlines During Simulated Fly-backs (Cut-offs and Tear-outs). (AMC Research, 2018).

  • Gilman, E., Beverly, S., Musyl, M. & Chaloupka, M. Commercial viability of alternative designs placing pelagic longline branchline weights at the hook to reduce seabird bycatch. Endanger. Species Res. 43, 223–233 (2020).

    Article 

    Google Scholar 

  • Fenaughty, J. & Smith, N. A Simple New Method for Monitoring Longline Sink Rate to Selected Depths. Document WG-FSA-01/46. (Commission for the Conservation of Antarctic Marine Living Resources, 2001).

  • Wienecke, B. & Robertson, G. Validation of sink rates of longlines measured using two different methods. CCAMLR Sci. 11, 179–187 (2004).

    Google Scholar 

  • Melvin, E. & Wainstein, M. Seabird Avoidance Measures for Small Alaskan Longline Vessels (University of Washington, 2006).

    Google Scholar 

  • CCAMLR. Longline Weighting for Seabird Conservation. Conservation Measure 24-02. (Commission for the Conservation of Antarctic Marine Living Resources, 2014).

  • Robertson, G., Candy, S., Wienecke, B. & Lawton, K. Experimental determinations of factors affecting the sink rates of baited hooks to minimize seabird mortality in pelagic longline fisheries. Aquat. Conserv. 20, 632–643. https://doi.org/10.1002/aqc.1140 (2010).

    Article 

    Google Scholar 

  • Wondershare Technology. Wondershare Filmora X. Version 10.2.0.32. (Wondershare Technology Co., 2021).

  • Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A 182, 1–14. https://doi.org/10.1111/rssa.12378 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).

  • Gelman, A, & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2007).

  • Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32. https://doi.org/10.18637/jss.v076.i01 (2017).

    Article 

    Google Scholar 

  • Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28. https://doi.org/10.18637/jss.v080.i01 (2017).

    Article 

    Google Scholar 

  • Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish. Biol. Fish. 28, 417–433. https://doi.org/10.1007/s11160-017-9509-7 (2018).

    Article 

    Google Scholar 

  • Signorell, A., et al. DescTools: Tools for Descriptive Statistics. R package version 0.99.18. (R Core Team, 2016).

  • Wackerly, D., Mendenhall, W. & Scheaffer, R. Mathematical Statistics with Applications. 3rd ed. (Duxbury Press, 1986).

  • van Houwelingen, H., Arends, L. & Stijnen, T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Stat. Med. 21, 589–624. https://doi.org/10.1002/sim.1040 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 (2010).

    Article 

    Google Scholar 

  • Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90. https://doi.org/10.1002/jrsm.1370 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lemoine, N. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928. https://doi.org/10.1111/oik.05985 (2019).

    Article 

    Google Scholar 

  • Schild, A. & Voracek, M. Finding your way out of the forest without a trail of bread crumbs: Development and evaluation of two novel displays of forest plots. Res. Synth. Methods 6, 74–86. https://doi.org/10.1002/jrsm.1125 (2015).

    Article 
    PubMed 

    Google Scholar 

  • van der Bles, A. et al. Communicating uncertainty about facts, numbers and science. R. Soc. Open Sci. 6, 181870. https://doi.org/10.1098/rsos.181870 (2019).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. (Springer, 2016).

  • Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Softw. 96, 1–4. https://doi.org/10.18637/jss.v096.i01 (2020).

    Article 

    Google Scholar 

  • Vovk, V. & Wang, R. Combining p-values via averaging. Biometrika 107, 791–808. https://doi.org/10.1093/biomet/asaa027 (2020).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Gilman, E., Brothers, N. & Kobayashi, D. Comparison of the efficacy of three seabird bycatch avoidance methods in Hawaii pelagic longline fisheries. Fish. Sci. 73, 208–210 (2007).

    CAS 
    Article 

    Google Scholar 

  • Star-Oddi. DST centi-TD Miniature Temperature and Depth Data Logger. (Star-Oddi, 2021).

  • Frankish, C., Manica, A., Navarro, J. & Phillips, R. Movements and diving behaviour of white-chinned petrels: Diurnal variation and implications for bycatch mitigation. Aquat. Conserv. 31, 1715–1729. https://doi.org/10.1002/aqc.3573 (2021).

    Article 

    Google Scholar 

  • Cooke, S. & Suski, C. Are circular hooks and effective tool for conserving marine and freshwater recreational catch-and-release fisheries?. Aquat. Conserv. 14, 299–326. https://doi.org/10.1002/aqc.614 (2004).

    Article 

    Google Scholar 

  • Ward, P., Lawrence, E., Darbyshire, R. & Hindmarsh, S. Large-scale experiment shows that nylon leaders reduce shark bycatch and benefit pelagic longline fishers. Fish. Res. 90, 100–108. https://doi.org/10.1016/j.fishres.2007.09.034 (2008).

    Article 

    Google Scholar 

  • McCormack, E. & Rawlinson, N. The Relative Safety of the Agreement on the Conservation of Albatrosses and Petrels (ACAP) Recommended Minimum Specifications for the Weighting of Branchlines during Simulated Fly-backs. ACAP-SBWG7-Doc8. (Agreement on the Conservation of Albatrosses and Petrels, 2016).

  • Goad, D., Debski, I. & Potts, J. Hookpod-mini: A smaller potential solution to mitigate seabird bycatch in pelagic longline fisheries. Endanger. Species Res. 39, 1–8. https://doi.org/10.3354/esr00953 (2019).

    Article 

    Google Scholar 

  • WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. (World Health Organization, 2009).

  • Grade, T. et al. Lead poisoning from ingestion of fishing gear: A review. Ambio 48, 1023–1038. https://doi.org/10.1007/s13280-019-01179-w (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilman, E. et al. Highest risk abandoned, lost and discarded fishing gear. Sci. Rep. 11, 7195. https://doi.org/10.1038/s41598-021-86123-3 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brothers, N. In Pursuit of Procella—A Heavy Hook for Pelagic Longlines to Reduce Procellariiforme Bycatch. SBWG 10 Inf 09. (Agreement on the Conservation of Albatrosses and Petrels, 2021).

  • Bluhm, R. From hierarchy to network: A richer view of evidence for evidence-based medicine. Perspect. Biol. Med. 48, 535–547. https://doi.org/10.1353/pbm.2005.0082 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Stegenga, J. Down with the hierarchies. Topoi 33, 313–322. https://doi.org/10.1007/s11245-013-9189-4 (2014).

    Article 

    Google Scholar 

  • Marchionni, C. & Reijula, S. What is mechanistic evidence, and why do we need it for evidence-based policy?. Stud. Hist. Philos. Sci. A 73, 54–63. https://doi.org/10.1016/j.shpsa.2018.003 (2019).

    Article 

    Google Scholar 

  • Beverly, S., Chapman, L. & Sokimi, W. Horizontal Longline Fishing Methods and Techniques. Manual for Fishermen. (Secretariat of the Pacific Community, 2003).

  • Guilford, T., Padget, O., Maurice, L. & Catry, P. Unexpectedly deep diving in an albatross. Curr. Biol. 32, R26–R28. https://doi.org/10.1016/j.cub.2021.11.036 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Advancing public understanding of sea-level rise

    Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia