Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202 (2015).
Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).
Google Scholar
Firbank, L. G., Petit, S., Smart, S., Blain, A. & Fuller, R. J. Assessing the impacts of agricultural intensification on biodiversity: A British perspective. Philos. Trans. R. Soc. B: Biol. Sci. 363, 777–787 (2007).
Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).
Google Scholar
Steinfeld, H., de Haan, C. & Blackburn, H. Livestock—Environment Interactions 88 (WRENmedia, 1997).
Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).
Google Scholar
Schieltz, J. M. & Rubenstein, D. I. Evidence based review: Positive versus negative effects of livestock grazing on wildlife. What do we really know?. Environ. Res. Lett. 11, 113003 (2016).
Google Scholar
Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Keddy, P. A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).
Pärtel, M., Zobel, M., Zobel, K., van der Maarel, E. & Partel, M. The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos 75, 111–117 (1996).
Temperton, V., Hobbs, R. J., Nuttle, T. & Halle, S. Assembly Rules and Restoration Ecology. Bridging the Gap Between Theory and Practice (Island Press, 2004).
Leibold, M. A. Similarity and local co-existence of species in regional biotas. Evol. Ecol. 12, 95–110 (1998).
Hortal, J. et al. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles: Ice age determines European scarab diversity. Ecol. Lett. 14, 741–748 (2011).
Google Scholar
de Bello, F., Lepš, J. & Sebastià, M.-T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29, 801–810 (2006).
Reymond, A., Purcell, J., Cherix, D., Guisan, A. & Pellissier, L. Functional diversity decreases with temperature in high elevation ant fauna: Functional diversity in high elevation ant. Ecol. Entomol. 38, 364–373 (2013).
Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).
Mason-Romo, E. D., Farías, A. A. & Ceballos, G. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico. PLoS ONE 12, e0189104 (2017).
Google Scholar
Wen, Z. et al. Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Sci. Total Environ. 682, 583–590 (2019).
Google Scholar
Corbelli, J. M. et al. Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10, e0126854 (2015).
Google Scholar
Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
Google Scholar
Spector, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): An invertebrate focal taxon for biodiversity research and conservation. Coleopt. Bull. 60, 71–83 (2006).
Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests: Cost-effectiveness of biodiversity surveys. Ecol. Lett. 11, 139–150 (2008).
Google Scholar
Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Google Scholar
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Google Scholar
Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Cons. 169, 248–257 (2014).
Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).
Google Scholar
Correa, C. M. A., Braga, R. F., Puker, A. & Korasaki, V. Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. J. Insect Conserv. 23, 89–99 (2019).
Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 21, 147–156 (2017).
Guerra Alonso, C. B., Zurita, G. A. & Bellocq, M. I. Dung beetles response to livestock management in three different regional contexts. Sci. Rep. 10, 3702 (2020).
Google Scholar
de Siqueira Neves, F. et al. Successional and seasonal changes in a community of dung beetles (Coleoptera: Scarabaeinae) in a Brazilian tropical dry forest. Nat. Conserv. 08, 160–164 (2010).
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).
Brown, A. La situación ambiental Argentina 2005 (Fundación Vida Silvestre Argentina, 2006).
Larsen, T. H., Lopera, A. & Forsyth, A. Extreme trophic and habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt. Bull. 60, 315–324 (2006).
Vaz-de-Mello, F. Z. A Multilingual Key to the Genera and Subgenera of the Subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae) (Magnolia Press, 2011).
Braun-Blanquet, J. Fitosociología [Phytosociology]. Bases para el estudio de las comunidades vegetales [Basis for the study of plant communities] 820 (Editorial H. Blume, 1979).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Scholtz, C. H., Davis, A. L. V. & Kryger, U. Evolutionary Biology and Conservation of Dung Beetles (Pensoft, 2009).
Simmons, L. W. & Ridsdill-Smith, J. Reproductive competition and its impact on the evolution and ecology of dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 1–20 (Wiley, 2011). https://doi.org/10.1002/9781444342000.ch1.
Google Scholar
Vaz-de-Mello, F. Scarabaeidae in Catálogo Taxonômico da Fauna do Brasil. Catálogo Taxonômico da Fauna do Brasil. http://fauna.jbrj.gov.br/fauna/faunadobrasil/128171 (2018).
Zunino, M. Food relocation behaviour: A multivalent strategy of Coleoptera. In Advances in Coleopterology (eds Zunino, M. et al.) 297–314 (AEC, 1991).
LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20, 97–117 (1989).
Soto, C. S., Giombini, M. I., Giménez Gómez, V. C. & Zurita, G. A. Phenotypic differentiation in a resilient dung beetle species induced by forest conversion into cattle pastures. Evol. Ecol. 33, 385–402 (2019).
Laliberté, E., Legendre, P. & Shipley, B. Package ‘FD’. Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology (2014).
Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).
Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).
Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).
Google Scholar
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 1, 3–14 (2010).
Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22, 134–147 (2008).
Oksanen, J. et al. vegan: Community Ecology Package (2017).
Clarke, K. R. & Green, R. H. Statistical design and analysis for a ‘biological effects’ study. Mar. Ecol. Prog. Ser. 46, 213–226 (1988).
Google Scholar
da Silva, P. G. & Cassenote, S. Environmental drivers of species composition and functional diversity of dung beetles along the Atlantic Forest-Pampa transition zone. Austral. Ecol. 44, 786–799 (2019).
Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes: Ecological processes regulated by dung beetles. Insect Conserv. Divers. 4, 115–122 (2011).
Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).
Google Scholar
Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).
Cerullo, G. R., Edwards, F. A., Mills, S. C. & Edwards, D. P. Tropical forest subjected to intensive post-logging silviculture maintains functionally diverse dung beetle communities. For. Ecol. Manage. 444, 318–326 (2019).
Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecol. 36, 333–338 (2010).
Google Scholar
Chown, S. L., Sørensen, J. G. & Terblanche, J. S. Water loss in insects: An environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).
Google Scholar
Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: Patterns and ecological implications. Oecologia 122, 452–458 (2000).
Google Scholar
Lobo, J. M., Lumaret, J.-P. & Jay-Robert, P. Sampling dung beetles in the French Mediterranean area: Effects of abiotic factors and farm practices. Pedobiología 42(3), 252–266 (1998).
Navarrete, D. & Halffter, G. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: The effects of anthropogenic changes. Biodivers. Conserv. 17, 2869–2898 (2008).
Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. J. Insect Physiol. 52, 854–860 (2006).
Google Scholar
Davis, A. J., Huijbregts, H. & Krikken, J. The role of local and regional processes in shaping dung beetle communities in tropical forest plantations in Borneo. Glob. Ecol. 9, 281–292 (2000).
Tuff, K. T., Tuff, T. & Davies, K. F. A framework for integrating thermal biology into fragmentation research. Ecol. Lett. 19, 361–374 (2016).
Google Scholar
Davis, A. L. V. Habitat fragmentation in southern Africa and distributional response patterns in five specialist or generalist dung beetle families (Coleoptera). Afr. J. Ecol. 32, 192–207 (1994).
Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica 34, 144–154 (2002).
Hill, C. Habitat specificity and food preferences of an assemblage of tropical Australian dung beetles. J. Trop. Ecol. 12, 449–460 (1996).
Supp, S. R. & Ernest, S. K. M. Species-level and community-level responses to disturbance: A cross-community analysis. Ecology 95, 1717–1723 (2014).
Google Scholar
Davis, A. L. V., Scholtz, C. H. & Deschodt, C. Multi-scale determinants of dung beetle assemblage structure across abiotic gradients of the Kalahari-Nama Karoo ecotone, South Africa. J. Biogeogr. 35, 1465–1480 (2008).
Nervo, B., Tocco, C., Caprio, E., Palestrini, C. & Rolando, A. The effects of body mass on dung removal efficiency in dung beetles. PLoS ONE 9, e107699 (2014).
Google Scholar
Bui, V. B., Ziegler, T. & Bonkowski, M. Morphological traits reflect dung beetle response to land use changes in tropical karst ecosystems of Vietnam. Ecol. Ind. 108, 105697 (2020).
Giménez Gómez, V. C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 13364 (2020).
Google Scholar
Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS ONE 7, e33914 (2012).
Google Scholar
Gómez-Cifuentes, A., Vespa, N., Semmartín, M. & Zurita, G. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil. Ecol. 154, 103652 (2020).
Fernández, P. D. et al. Understanding the distribution of cattle production systems in the South American Chaco. J. Land Use Sci. 15, 52–68 (2020).
Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 13, 16 (2008).
Mastrangelo, M. E. & Gavin, M. C. Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina. Conserv. Biol. 26, 1040–1051 (2012).
Google Scholar
Macchi, L. et al. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 56, 629–639 (2019).
Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).
Google Scholar
Ortega-Martínez, I. J., Moreno, C. E. & Escobar, F. A dirty job: manure removal by dung beetles in both a cattle ranch and laboratory setting. Entomol. Exp. Appl. 161, 70–78 (2016).
Source: Ecology - nature.com