in

Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups

  • Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jhan, K. Y. et al. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasites Vectors. 13, 405. https://doi.org/10.1186/s13071-020-04230-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boillat, M. et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep. 30, 320–334 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brombacher, T. M. et al. Nippostrongylus brasiliensis infection leads to impaired reference memory and myeloid cell interference. Sci. Rep. 8, 2958. https://doi.org/10.1038/s41598-018-20770-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavaliers, M. & Colwell, D. D. Reduced spatial learning in mice infected with the nematode Heligmosomoides polygyrus. Parasitology 110(Pt 5), 591–597 (1995).

    PubMed 
    Article 

    Google Scholar 

  • Pan, S. C. et al. Cognitive and microbiome impacts of experimental Ancylostoma ceylanicum hookworm infections in hamsters. Sci. Rep. 9, 7868. https://doi.org/10.1038/s41598-019-44301-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blecharz-Klin, K. et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 18, e1010330–e1010330. https://doi.org/10.1371/journal.ppat.1010330 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braithwaite, V. et al. Spatial and discrimination learning in rodents infected with the nematode Strongyloides ratti. Parasitology 117(Pt 2), 145–154 (1998).

    PubMed 
    Article 

    Google Scholar 

  • Sharma, S., Rakoczy, S. & Brown-Borg, H. Assessment of spatial memory in mice. Life Sci. 87, 521–536 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vorhees, C. V. & Williams, M. T. Assessing spatial learning and memory in rodents. ILAR J. 55, 310–332 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pelletier, F., Page, K. A., Ostiguy, T. & Festa-Bianchet, M. Fecal counts of lungworm larvae and reproductive effort in bighorn sheep. Ovis canadensis. Oikos. 110, 473–480 (2005).

    Article 

    Google Scholar 

  • Odiere, M. R., Koski, K. G., Weiler, H. A. & Scott, M. E. Concurrent nematode infection and pregnancy induce physiological responses that impair linear growth in the murine foetus. Parasitology 137, 991–1002 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fitzgerald, E., Hor, K. & Drake, A. J. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum. Dev. 150, 105190. https://doi.org/10.1016/j.earlhumdev.2020.105190 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24, 881–897 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Akitake, Y. et al. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring. Nutr. Res. 35, 76–87 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hammelrath, L. et al. Morphological maturation of the mouse brain: An in vivo MRI and histology investigation. Neuroimage 125, 144–152 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Wills, T., Muessig, L. & Cacucci, F. The development of spatial behaviour and the hippocampal neural representation of space. Philos. Trans. R. Soc. B: Biol. Sci. 369, 20130409. https://doi.org/10.1098/rstb.2013.0409 (2014).

    Article 

    Google Scholar 

  • Travaglia, A., Steinmetz, A. B., Miranda, J. M. & Alberini, C. M. Mechanisms of critical period in the hippocampus underlie object location learning and memory in infant rats. Learn Mem. 25, 176–182 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McHail, D. G., Valibeigi, N. & Dumas, T. C. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem. 25, 138–146 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bliss, T. V. P., Collingridge, G. L., Morris, R. G. M. & Reymann, K. G. Long-term potentiation in the hippocampus: Discovery, mechanisms and function. Neuroforum 24, A103–A120 (2018).

    Article 

    Google Scholar 

  • Schiller, D. et al. Memory and space: Towards an understanding of the cognitive map. J. Neurosci. 35, 13904–13911 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiang, P. et al. The persistent effects of maternal infection on the offspring’s cognitive performance and rates of hippocampal neurogenesis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 44, 279–289 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wallace, K. L. et al. Interleukin-10/Ceftriaxone prevents E. coli-induced delays in sensorimotor task learning and spatial memory in neonatal and adult Sprague-Dawley rats. Brain. Res. Bull. 81, 141–148 (2010).

  • Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Denenberg, V. H. Open-field behavior in the rat: what does it mean?. Ann. N. Y. Acad. Sci. 159, 852–859 (1969).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vogel-Ciernia, A. & Wood, M. A. Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci. 69, 8.31.1–17 (2014).

  • Denninger, J. K., Smith, B. M. & Kirby, E. D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. https://doi.org/10.3791/58593 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Krüger, H.-S., Brockmann, M. D., Salamon, J., Ittrich, H. & Hanganu-Opatz, I. L. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol. Learn. Mem. 97, 470–481 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Cruz-Sanchez, A. et al. Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci. Rep. 10, 10612. https://doi.org/10.1038/s41598-020-67619-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sunyer, B., Patil, S., Hoger, H. & Lubec, G. Barnes maze, a useful task to assess spatial reference memory in the mice. Nat. Protoc. https://doi.org/10.1038/nprot.2007.390 (2007).

    Article 

    Google Scholar 

  • Schenk, F. Development of place navigation in rats from weaning to puberty. Behav. Neural Biol. 43, 69–85 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, R. W. & Kraemer, P. J. Ontogenetic differences in retention of spatial learning tested with the Morris water maze. Dev. Psychobiol. 30, 329–341 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Batinić, B. et al. Lipopolysaccharide exposure during late embryogenesis results in diminished locomotor activity and amphetamine response in females and spatial cognition impairment in males in adult, but not adolescent rat offspring. Behav. Brain Res. 299, 72–80 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lante, F. et al. Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic. Biol. Med. 42, 1231–1245 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, H. et al. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol. Lett. 192, 245–251 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yagi, S. & Galea, L. A. M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44, 200–213 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Vuoksimaa, E. et al. Brain structure mediates the association between height and cognitive ability. Brain Struct. Func. 223, 3487–3494 (2018).

    Article 

    Google Scholar 

  • Harris, M. A., Brett, C. E., Deary, I. J. & Starr, J. M. Associations among height, body mass index and intelligence from age 11 to age 78 years. BMC Geriatr. 16, 167. https://doi.org/10.1186/s12877-016-0340-0 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira, V. H. et al. Adult body height is a good predictor of different dimensions of cognitive function in aged individuals: A cross-sectional study. Front. Aging Neurosci. 8, 1. https://doi.org/10.3389/fnagi.2016.00217 (2016).

  • Case, A. & Paxson, C. Stature and status: Height, ability, and labor market outcomes. J. Polit. Econ. 116, 499–532 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Frick, K. M., Kim, J., Tuscher, J. J. & Fortress, A. M. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem. 22, 472–493 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Qiu, L. R. et al. Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat. Commun. 9, 2615. https://doi.org/10.1038/s41467-018-04921-2 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Towe, A. L. & Mann, M. D. Brain size/body length relations among myomorph rodents. Brain Behav. Evol. 39, 17–23 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Perepelkina, O. V., Tarasova, A. Y., Ogienko, N. A., Lil’p, I. G. & Poletaeva, I. I. Brain weight and cognitive abilities of laboratory mice. Biol. Bull. Rev. 10, 91–101 (2020).

  • Odiere, M. R., Scott, M. E., Weiler, H. A. & Koski, K. G. Protein deficiency and nematode infection during pregnancy and lactation reduce maternal bone mineralization and neonatal linear growth in mice. J. Nutr. 140, 1638–1645 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sánchez, M. B. et al. Leishmania amazonensis infection impairs reproductive and fetal parameters in female mice. Rev. Argent. Microbiol. 53, 194–201 (2021).

    PubMed 

    Google Scholar 

  • Haque, M., Koski, K. G. & Scott, M. E. Maternal gastrointestinal nematode infection up-regulates expression of genes associated with long-term potentiation in perinatal brains of uninfected developing pups. Sci. Rep. 9, 4165. https://doi.org/10.1038/s41598-019-40729-w (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregory, R. D., Montgomery, S. S. J. & Montgomery, W. I. Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J. Anim. Ecol. 61, 749–757 (1992).

    Article 

    Google Scholar 

  • Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maizels, R. M. et al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp. Parasitol. 132, 76–89 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Haque, M., Starr, L. M., Koski, K. G. & Scott, M. E. Differential expression of genes in fetal brain as a consequence of maternal protein deficiency and nematode infection. Int. J. Parasitol. 48, 51–58 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hsueh, P.-T. et al. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation. Genes Brain Behav. 17, e12479. https://doi.org/10.1111/gbb.12479 (2018).

  • Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ricceri, L., Colozza, C. & Calamandrei, G. Ontogeny of spatial discrimination in mice: A longitudinal analysis in the modified open-field with objects. Dev. Psychobiol. 37, 109–118 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howland, J. G., Cazakoff, B. N. & Zhang, Y. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy. Neuroscience 201, 184–198 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ito, H. T., Smith, S. E. P., Hsiao, E. & Patterson, P. H. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav. Immun. 24, 930–941 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry. 13, 208–221 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chapillon, P. & Roullet, P. Use of proximal and distal cues in place navigation by mice changes during ontogeny. Dev. Psychobiol. 29, 529–545 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Variyam, E. P. & Banwell, J. G. Hookworm disease: Nutritional implications. Rev. Infect. Dis. 4, 830–835 (1982).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bansemir, A. D. & Sukhdeo, M. V. The food resource of adult Heligmosomoides polygyrus in the small intestine. J. Parasitol. 80, 24–28 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Starr, L. M., Scott, M. E. & Koski, K. G. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines. J. Nutr. 145, 41–50 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herring, C. M., Bazer, F. W., Johnson, G. A. & Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med. (Maywood). 243, 525–533 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Starr, L. M., Odiere, M. R., Koski, K. G. & Scott, M. E. Protein deficiency alters impact of intestinal nematode infection on intestinal, visceral and lymphoid organ histopathology in lactating mice. Parasitology 141, 801–813 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bastian, T. W., von Hohenberg, W. C., Mickelson, D. J., Lanier, L. M. & Georgieff, M. K. Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity. Dev. Neurosci. 38, 264–276 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bastian, T. W., Rao, R., Tran, P. V. & Georgieff, M. K. The effects of early-life iron deficiency on brain energy metabolism. Neurosci. Insights. 15, 2633105520935104. https://doi.org/10.1177/2633105520935104 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gould, J. M. et al. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc. Natl. Acad. Sci. 115, E7398–E7407. https://doi.org/10.1073/pnas.1721876115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radlowski, E. & Johnson, R. Perinatal iron deficiency and neurocognitive development. Front. Hum. Neurosci. 7, 585 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rytych, J. L. et al. Early life iron deficiency impairs spatial cognition in neonatal piglets. J. Nutr. 142, 2050–2056 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Snyder, J. S., Hong, N. S., McDonald, R. J. & Wojtowicz, J. M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brązert, M. et al. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol. Med. Rep. 21, 1749–1760 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431 (1999).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. et al. Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain. Res. 1531, 1–8 (2013).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Odiere, M. R., Scott, M. E., Leroux, L. P., Dzierszinski, F. S. & Koski, K. G. Maternal protein deficiency during a gastrointestinal nematode infection alters developmental profile of lymphocyte populations and selected cytokines in neonatal mice. J. Nutr. 143, 100–107 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • El Ahdab, N., Haque, M., Madogwe, E., Koski, K. G. & Scott, M. E. Maternal nematode infection upregulates expression of Th2/Treg and diapedesis related genes in the neonatal brain. Sci. Rep. 11, 22082. https://doi.org/10.1038/s41598-021-01510-0 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav. Immun. 24, 243–253 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: A key role for IL-4. Exp. Med. 207, 1067–1080 (2010).

    CAS 
    Article 

    Google Scholar 

  • Brombacher, T. M. et al. IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory. Sci. Rep. 10, 16506. https://doi.org/10.1038/s41598-020-73574-3 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20, 7116–7121 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Miranda, M., Morici, J. F., Zanoni, M. B. & Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13. https://doi.org/10.3389/fncel.2019.00363 (2019).

  • Williamson, L. L. et al. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav. Immun. 51, 14–28 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McKay, D. M. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 137, 385–394 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meyer, U., Feldon, J. & Fatemi, S. H. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci. Biobehav. Rev. 33, 1061–1079 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Johnston, C. J. C. et al. Cultivation of Heligmosomoides polygyrus: an immunomodulatory nematode parasite and its secreted products. J. Vis. Exp. e52412–e52412. https://doi.org/10.3791/52412 (2015).

  • Valanparambil, R. M. et al. Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nat. Protoc. 9, 2740–2754 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Murai, T., Okuda, S., Tanaka, T. & Ohta, H. Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiol. Behav. 90, 116–124 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Patil, S. S., Sunyer, B., Hoger, H. & Lubec, G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav. Brain. Res. 198, 58–68 (2009).

    PubMed 
    Article 

    Google Scholar 

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • Lazic, S. E. The problem of pseudoreplication in neuroscientific studies: Is it affecting your analysis?. BMC Neurosci. 11, 5. https://doi.org/10.1186/1471-2202-11-5 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Vol. 1–574 (2009).

  • Bates, D., Maechler, M., Bolker, B. & Steve, W. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Fox, J. & Sanford, W. An R Companion to Applied Regression. 3 edn, (Sage, 2019).

  • emmeans: Estimated marginal means, aka least-squares means v. 1.4.8 (R package, 2020).

  • RVAideMemoire: Testing and plotting procedures for biostatistics. v. 0.9-78 (R package, 2020).

  • DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models v. 0.3.3.0 (R package, 2020).

  • Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Helping renewable energy projects succeed in local communities

    Could used beer yeast be the solution to heavy metal contamination in water?