in

Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime

  • Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    ADS 
    Article 

    Google Scholar 

  • Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26, 261–273 (2020).

    ADS 
    Article 

    Google Scholar 

  • Kravchenko, A. N. et al. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. 10, 3121 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Witzgall, K. et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 12, 4115 (2021).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796 (2012).

    ADS 
    Article 

    Google Scholar 

  • Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keiluweit, M., Nico, P. S., Kleber, M. & Fendorf, S. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127, 157–171 (2016).

    CAS 
    Article 

    Google Scholar 

  • Rohe, L. et al. Denitrification in soil as a function of oxygen availability at the microscale. Biogeosciences 18, 1185–1201 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hall, S. J. & Silver, W. L. Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry 125, 149–165 (2015).

    CAS 
    Article 

    Google Scholar 

  • Hagedorn, F., Bruderhofer, N., Ferrari, A. & Niklaus, P. A. Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: Biodegradation, physico-chemical retention or preferential flow? Soil Biol. Biochem. 88, 333–343 (2015).

    CAS 
    Article 

    Google Scholar 

  • Védère, C., Vieublé Gonod, L., Pouteau, V., Girardin, C. & Chenu, C. Spatial and temporal evolution of detritusphere hotspots at different soil moistures. Soil Biol. Biochem. 150, 107975 (2020).

    Article 
    CAS 

    Google Scholar 

  • Silver, W. L., Lugo, A. E. & Keller, M. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44, 301–328 (1999).

    Google Scholar 

  • Schuur, E. A. G., Chadwick, O. A. & Matson, P. A. Carbon cycling and soil carbon storage in mesic to wet hawaiian montane forests. Ecology 82, 3182–3196 (2001).

    Article 

    Google Scholar 

  • Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).

    ADS 
    Article 

    Google Scholar 

  • Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cleveland, C. C., Wieder, W. R., Reed, S. C. & Townsend, A. R. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91, 2313–2323 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol. Biochem. 59, 72–85 (2013).

    CAS 
    Article 

    Google Scholar 

  • Franzluebbers, A. J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol. 11, 91–101 (1999).

    Article 

    Google Scholar 

  • Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).

    ADS 
    Article 

    Google Scholar 

  • Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Ruamps, L. S., Nunan, N. & Chenu, C. Microbial biogeography at the soil pore scale. Soil Biol. Biochem. 43, 280–286 (2011).

    CAS 
    Article 

    Google Scholar 

  • Strong, D. T., Wever, H. D., Merckx, R. & Recous, S. Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil Sci. 55, 739–750 (2004).

    Article 

    Google Scholar 

  • Vogel, H.-J. et al. A holistic perspective on soil architecture is needed as a key to soil functions. Eur. J. Soil Sci. 73, e13152 (2022).

    Article 

    Google Scholar 

  • Lehmann, J. et al. Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 1, 238–242 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Steffens, M. et al. Identification of distinct functional microstructural domains controlling C storage in soil. Environ. Sci. Technol. 51, 12182–12189 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elyeznasni, N. et al. Exploration of soil micromorphology to identify coarse-sized OM assemblages in X-ray CT images of undisturbed cultivated soil cores. Geoderma 179-180, 38–45 (2012).

    ADS 
    Article 

    Google Scholar 

  • Hayes, T. L., Lindgren, F. T. & Gofman, J. W. A quantitative determination of the Osmium tetroxide-lipoprotein interaction. J. Cell Biol. 19, 251–255 (1963).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Belazi, D., Solé-Domènech, S., Johansson, B., Schalling, M. & Sjövall, P. Chemical analysis of osmium tetroxide staining in adipose tissue using imaging ToF-SIMS. Histochem. Cell Biol. 132, 105–115 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schulz M., et al. Structured heterogeneity in a marine terrace chronosequence: upland mottling. Vadose Zone J. 15, vzj2015.07.0102 (2016).

  • Fimmen et al. Fe–C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils. Biogeochemistry 87, 127–141 (2008).

    CAS 
    Article 

    Google Scholar 

  • Zheng, H., Kim, K., Kravchenko, A., Rivers, M. & Guber, A. Testing Os staining approach for visualizing soil organic matter patterns in intact samples via X-ray dual-energy tomography scanning. Environ. Sci. Technol. 54, 8980–8989 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).

    Article 

    Google Scholar 

  • Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Quigley M. Y., Rivers M. L. & Kravchenko A. N. Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Front. Environ. Sci. 6 (2018).

  • Arai, M. et al. An improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography. Soil Tillage Res. 191, 275–281 (2019).

    Article 

    Google Scholar 

  • Peth, S. et al. Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biol. Biochem. 78, 189–194 (2014).

    CAS 
    Article 

    Google Scholar 

  • Rawlins, B. G. et al. Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography. Soil 2, 659–671 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Plattner H. & Zingsheim H. P. Electron Microscopic Methods in Cellular and Molecular Biology. In: Subcellular Biochemistry (ed. Roodyn D. B.). (Plenum Press, 1983).

  • Litman, R. B. & Barrnett, R. J. The mechanism of the fixation of tissue components by osmium tetroxide via hydrogen bonding. J. Ultrastruct. Res. 38, 63–86 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vepraskas M. & Lindbo D. Redoximorphic features as related to soil hydrology and hydric soils. In: Hydropedology: Synergistic Integration of Soil Science and Hydrology (ed. Lin H.). Academic Press (2012).

  • See C. R., et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).

  • Vidal, A. et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biol. Biochem. 160, 108347 (2021).

    CAS 
    Article 

    Google Scholar 

  • Hagedorn, F., Kaiser, K., Feyen, H. & Schleppi, P. Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J. Environ. Qual. 29, 288–297 (2000).

    CAS 
    Article 

    Google Scholar 

  • Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pédrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Eusterhues, K., Rumpel, C. & Kögel-Knabner, I. Stabilization of soil organic matter isolated via oxidative degradation. Org. Geochem. 36, 1567–1575 (2005).

    CAS 
    Article 

    Google Scholar 

  • Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lucas, M., Schlüter, S., Vogel, H.-J. & Vetterlein, D. Soil structure formation along an agricultural chronosequence. Geoderma 350, 61–72 (2019).

    ADS 
    Article 

    Google Scholar 

  • Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).

    ADS 
    Article 

    Google Scholar 

  • Marschner, B. & Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113, 211–235 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Stirling, E., Smernik, R. J., Macdonald, L. M. & Cavagnaro, T. R. The effect of fire affected Pinus radiata litter and char addition on soil nitrogen cycling. Sci. Total Environ. 664, 276–282 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kravchenko, A. N. et al. Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat. Geosci. 10, 496 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kim, K., Guber, A., Rivers, M. & Kravchenko, A. Contribution of decomposing plant roots to N2O emissions by water absorption. Geoderma 375, 114506 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Goebel, M. O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–2656 (2011).

    ADS 
    Article 

    Google Scholar 

  • Brodowski, S., Amelung, W., Haumaier, L., Abetz, C. & Zech, W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128, 116–129 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Diel, J., Vogel, H.-J. & Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 345, 63–71 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Surey R., et al. Contribution of particulate and mineral-associated organic matter to potential denitrification of agricultural soils. Front. Environ. Sci. 9 (2021).

  • Kaiser, M., Ellerbrock, R. H. & Sommer, M. Separation of coarse organic particles from bulk surface soil samples by electrostatic attraction. Soil Sci. Soc. Am. J. 73, 2118–2130 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Atkinson, R., Posner, A. & Quirk, J. P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 71, 550–558 (1967).

    CAS 
    Article 

    Google Scholar 

  • Mueller, C. W. et al. Submicron scale imaging of soil organic matter dynamics using NanoSIMS – from single particles to intact aggregates. Org. Geochem. 42, 1476–1488 (2012).

    Article 
    CAS 

    Google Scholar 

  • Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry—a new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol. Biochem. 39, 1835–1850 (2007).

    CAS 
    Article 

    Google Scholar 

  • Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. Med. Imaging, IEEE Trans. 29, 196–205 (2010).

    Article 

    Google Scholar 

  • Otsu, N. A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975).

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schlüter, S., Leuther, F., Vogler, S. & Vogel, H.-J. X-ray microtomography analysis of soil structure deformation caused by centrifugation. Solid Earth 7, 129–140 (2016).

    ADS 
    Article 

    Google Scholar 

  • Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schlüter, S., Sheppard, A., Brown, K. & Wildenschild, D. Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour. Res. 50, 3615–3639 (2014).

    ADS 
    Article 

    Google Scholar 

  • Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).

    Google Scholar 

  • Surey, R. et al. Differences in labile soil organic matter explain potential denitrification and denitrifying communities in a long-term fertilization experiment. Appl. Soil Ecol. 153, 103630 (2020).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2020).


  • Source: Ecology - nature.com

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Strengthening students’ knowledge and experience in climate and sustainability