in

Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

  • Hayes, S. M. & McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 59, 192–199 (2018).

    Google Scholar 

  • Saatz, J., Vetterlein, D., Mattusch, J., Otto, M. & Daus, B. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ. Pollut. 204, 32–38 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Gonzalez, V., Vignati, D. A. L., Leyval, C. & Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 71, 148–157 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Kovarikova, M., Tomaskova, I. & Soudek, P. Rare earth elements in plants. Biol. Plant. 63, 20–32 (2019).

    CAS 

    Google Scholar 

  • Thomas, P. J., Carpenter, D., Boutin, C. & Allison, J. E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 96, 57–66 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ramos, S. J. et al. Rare earth elements in the soil environment. Curr. Pollut. Rep. 2, 28–50 (2016).

    CAS 

    Google Scholar 

  • Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 10, e0129936 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotelnikova, A., Fastovets, I., Rogova, O. & Volkov, D. S. La, Ce and Nd in the soil-plant system in a vegetation experiment with barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 206, 111193 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Hu, Z., Richter, H., Sparovek, G. & Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 27, 183–220 (2004).

    CAS 

    Google Scholar 

  • Tao, Y. et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ. Pollut. 298, 118540 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 267, 191–206 (2004).

    CAS 

    Google Scholar 

  • Ding, S. et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: An application for metal accumulation by plants. Environ. Sci. Technol. 40, 2686–2691 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grosjean, N. et al. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 9, 18458 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, M. et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int. J. Phytoremediat. 20, 415–423 (2018).

    CAS 

    Google Scholar 

  • Yuan, M. et al. The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L.. Plant Soil 421, 67–82 (2017).

    CAS 

    Google Scholar 

  • Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (eds Van der Ent, A. et al.) 297–308 (Springer, 2018).

    Google Scholar 

  • Purwadi, I., Nkrumah, P. N., Paul, A. L. D. & van der Ent, A. Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology 31, 335–342 (2021).

    CAS 

    Google Scholar 

  • Shan, X. et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165, 1343–1353 (2003).

    CAS 

    Google Scholar 

  • Wu, J., Chen, A., Peng, S., Wei, Z. & Liu, G. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 373, 329–338 (2013).

    CAS 

    Google Scholar 

  • Zhenggui, W. et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut. 114, 345–355 (2001).

    Google Scholar 

  • Okoroafor, P. U., Ogunkunle, C. O., Heilmeier, H. & Wiche, O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. Int. J. Phytoremediat. 24, 1310–1320 (2022).

    CAS 

    Google Scholar 

  • Taggart, R. K. et al. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environ. Sci. Process. Impacts 20, 1390–1403 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Fehlauer, T. et al. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. Chemosphere 287, 132315 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, W.-S. et al. Spatially resolved localization of lanthanum and cerium in the rare earth element hyperaccumulator fern Dicranopteris linearis from China. Environ. Sci. Technol. 54, 2287–2294 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saatz, J. et al. Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS. Environ. Pollut. 216, 245–252 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Mantienne, J. L. Minéralisation thallifère de Jas Roux (Hautes-Alpes)—Alpes françaises (Université Pierre et Marie Curie—Paris VI, 1974).

    Google Scholar 

  • Kabata-Pendias, A. Trace Elements in Soils and Plants (CRC Press, 2011).

    Google Scholar 

  • Kastori, R., Maksimovic, I., Zeremski-Skoric, T. & Putnik-Delic, M. Rare earth elements: Yttrium and higher plants. Zb. Matice Srp. Za Prir. Nauke 118, 87–98 (2010).

  • Salminen, R., Vos, W. D. & Tarvainen, T. Geochemical Atlas of Europe—Part 1: Background Information, Methodology and Maps (Geological Survey of Finland, 2005).

    Google Scholar 

  • Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil-Like Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 l/kg Dry Matter. https://doi.org/10.31030/3069638 (2020).

  • R Core Team. R: A Language and Environment for Statistical Computing (2021).

  • RStudio Team. RStudio: Integrated Development Environment for R (RStudio, PBC, 2020).

    Google Scholar 

  • Radziemska, M., Vaverková, M. & Baryła, A. Phytostabilization—Management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 14, 958 (2017).

    PubMed Central 

    Google Scholar 

  • Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil. J. Synchrotron Radiat. 22, 1118–1129 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Sancho-Tomás, M. et al. Geochemical evidence for arsenic cycling in living microbialites of a high altitude Andean Lake (Laguna Diamante, Argentina). Chem. Geol. 549, 11 (2020).

    Google Scholar 

  • Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. J. Synchrotron Radiat. 20, 293–299 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Aubineau, J. et al. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat. Commun. 10, 2670 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62, 63–68 (2007).

    ADS 

    Google Scholar 

  • Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: Fast density-based clustering with R. J. Stat. Softw. 91, 1 (2019).

    Google Scholar 

  • Hennig, C. fpc: Flexible Procedures for Clustering (2020).

  • Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2020).

  • Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Google Scholar 

  • Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2021).

  • Wei, T. & Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix (2021).

  • van der Ent, A. et al. (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants (Springer, 2021).

    Google Scholar 

  • Liu, C. et al. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere 282, 131096 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Han, F. et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165, 481–492 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ruíz-Herrera, L. F., Sánchez-Calderón, L., Herrera-Estrella, L. & López-Bucio, J. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353, 231–247 (2012).

    Google Scholar 

  • González-Guerrero, M., Escudero, V., Saéz, Á. & Tejada-Jiménez, M. Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7, 1088 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jogawat, A., Yadav, B., Chhaya, & Narayan, O. P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 173, 259–275. https://doi.org/10.1111/ppl.13370 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krämer, U., Talke, I. N. & Hanikenne, M. Transition metal transport. FEBS Lett. 581, 2263–2272 (2007).

    PubMed 

    Google Scholar 

  • Tuduri, J. et al. Lumière sur la géologie des terres rares, pourquoi tant d’attraits? Géologues 204, 48–54 (2020).

    Google Scholar 

  • Tiziani, R. et al. Root handling affects carboxylates exudation and phosphate uptake of white lupin roots. Front. Plant Sci. 11, 584568 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wen, Z. et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. Plant Soil 465, 31–46 (2021).

    CAS 

    Google Scholar 

  • Wiche, O., Kummer, N.-A. & Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402, 235–245 (2016).

    CAS 

    Google Scholar 

  • Chen, A., Husted, S., Salt, D. E., Schjoerring, J. K. & Persson, D. P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol. 181, 729–742 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rengel, Z. et al. (eds) Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012).

    Google Scholar 

  • Brioschi, L. et al. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 366, 143–163 (2013).

    CAS 

    Google Scholar 

  • Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1767 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • St-Cyr, L. & Campbell, P. G. C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33, 969 (1996).

    Google Scholar 

  • Tripathi, R. D. et al. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6, 1789–1800 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Pourret, O. et al. The ‘europium anomaly’ in plants: Facts and fiction. Plant Soil 476, 721–728 (2022).

    CAS 

    Google Scholar 

  • Liu, C. et al. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Sci. Total Environ. 805, 150335 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Poschenrieder, C., Busoms, S. & Barceló, J. How plants handle trivalent (+3) elements. Int. J. Mol. Sci. 20, 3984 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Ma, J. F. & Hiradate, S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Rellán-Álvarez, R. et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51, 91–102 (2010).

    PubMed 

    Google Scholar 

  • Ding, S. et al. Role of ligands in accumulation and fractionation of rare earth elements in plants: Examples of phosphate and citrate. Biol. Trace Elem. Res. 107, 073–086 (2005).

    CAS 

    Google Scholar 

  • Wu, J., Wei, Z., Zhao, H., Li, H. & Hu, F. The role of amino acids in the long-distance transport of La and Y in the xylem sap of tomato. Biol. Trace Elem. Res. 129, 239–250 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, S. Guttation: New insights into agricultural implications. In Advances in Agronomy Vol. 128 (ed. Sparks, D. L.) 97–135 (Elsevier, 2014).

    Google Scholar 

  • Hossain, Md. B., Sawada, A., Noda, K. & Kawasaki, M. Hydathode function and changes in contents of elements in eddo exposed to zinc in hydroponic solution. Plant Prod. Sci. 20, 423–433 (2017).

    CAS 

    Google Scholar 

  • Singh, S. Guttation: Path, principles and functions. Aust. J. Bot. 61, 497 (2013).

    Google Scholar 

  • Wightman, R., Wallis, S. & Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 241, 27–34 (2018).

    Google Scholar 

  • Brüggemann, W., Maas-Kantel, K. & Moog, P. R. Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 196606 (1993).

    Google Scholar 

  • Ma, J. F., Ryan, P. R. & Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Tolrà, R. et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J. Plant Res. 124, 165–172 (2011).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Breeding and migration performance metrics highlight challenges for White-naped Cranes

    Grassland coverage change and its humanity effect factors quantitative assessment in Zhejiang province, China, 1980–2018