in

Natural plant diet impacts phenotypic expression of pyrethroid resistance in Anopheles mosquitoes

  • Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).

    Article 
    ADS 

    Google Scholar 

  • WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (2016).

  • WHO. Guidelines for malaria vector control (2019).

  • Gnankiné, O. et al. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa. Acta Trop. 128, 7–17 (2013).

    Article 

    Google Scholar 

  • Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).

    Article 

    Google Scholar 

  • Reid, M. C. & McKenzie, F. E. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar. J. 15, 1–8 (2016).

    Article 

    Google Scholar 

  • Huijben, S. & Paaijmans, K. P. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Spec. Issue Rev. Synth. https://doi.org/10.1111/eva.12530 (2017).

    Article 

    Google Scholar 

  • WHO. Global technical strategy for malaria 2016–2030, 2021 update (2021).

  • Ranson, H. et al. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol. 9, 491–497 (2000).

    Article 

    Google Scholar 

  • Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).

    Article 
    ADS 

    Google Scholar 

  • Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2011).

    Article 

    Google Scholar 

  • Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).

    Article 

    Google Scholar 

  • Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.. Insect Mol. Biol. 7, 179–184 (1998).

    Article 

    Google Scholar 

  • Jones, C. et al. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 109, 6614–6619 (2012).

    Article 
    ADS 

    Google Scholar 

  • Hunt, R. H., Brooke, B. D., Pillay, C., Koekemoer, L. L. & Coetzee, M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med. Vet. Entomol. 19, 271–275 (2005).

    Article 

    Google Scholar 

  • Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS One 6, e24968 (2011).

    Article 
    ADS 

    Google Scholar 

  • Rajatileka, S., Burhani, J. & Ranson, H. Mosquito age and susceptibility to insecticides. Trans. R. Soc. Trop. Med. Hyg. 105, 247–253 (2011).

    Article 

    Google Scholar 

  • Chouaibou, M. S. et al. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire. BMC Infect. Dis. 12, 1–7 (2012).

    Article 

    Google Scholar 

  • Jones, C. M. et al. Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso. Malar. J. 11, 1–11 (2012).

    Article 

    Google Scholar 

  • Kulma, K., Saddler, A. & Koella, J. C. Effects of age and larval nutrition on phenotypic expression of insecticide-resistance in Anopheles Mosquitoes. PLoS ONE 8, 8–11 (2013).

    Article 

    Google Scholar 

  • Aïzoun, N., Aïkpon, R., Azondekon, R., Asidi, A. & Akogbéto, M. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status and mosquito age. Asian Pac. J. Trop. Biomed. 4, 312–317 (2014).

    Article 

    Google Scholar 

  • Collins, E. et al. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea. Sci. Rep. 9, 1–12 (2019).

    Article 

    Google Scholar 

  • Oliver, S. & Brooke, B. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malar. J. 12, 1–9 (2013).

    Article 

    Google Scholar 

  • Owusu, H. F., Chitnis, N. & Müller, P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar 

  • Sovegnon, P. M., Fanou, M. J., Akoton, R. & Djihinto, O. Y. Effects of larval diet on the life-history traits and phenotypic expression of pyrethroid resistance in the major malaria vector Anopheles gambiae s.s. Preprint at bioRxiv http://doi.org/https://doi.org/10.1101/2022.01.11.475801 (2022).

  • Halliday, W. R. & Feyereisen, R. Why does DDT toxicity change after a blood meal in adult female Culex pipiens?. Pestic. Biochem. Physiol. 28, 172–181 (1987).

    Article 

    Google Scholar 

  • Oliver, S. V., Lyons, C. L. & Brooke, B. D. The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Sci. Rep. 12, 1–9 (2022).

    Article 

    Google Scholar 

  • Farenhorst, M. et al. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc. Natl. Acad. Sci. U. S. A. 106, 17443–17447 (2009).

    Article 
    ADS 

    Google Scholar 

  • Koella, J. C., Saddler, A. & Karacs, T. P. S. Blocking the evolution of insecticide-resistant malaria vectors with a microsporidian. Evol. Appl. 5, 283–292 (2012).

    Article 

    Google Scholar 

  • Alout, H. et al. Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J. Infect. Dis. 210, 1464–1470 (2014).

    Article 

    Google Scholar 

  • Glunt, K. D., Oliver, S. V., Hunt, R. H. & Paaijmans, K. P. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar. J. 17, 1–8 (2018).

    Article 

    Google Scholar 

  • Oliver, S. & Brooke, B. The effect of commercial herbicide exposure on the life history and insecticide resistance phenotypes of the major malaria vector Anopheles arabiensis (Diptera: culicidae). Acta Trop. 188, 152–160 (2018).

    Article 

    Google Scholar 

  • Oliver, S. & Brooke, B. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PLoS ONE 13, 1–17 (2018).

    Article 

    Google Scholar 

  • Foster, W. A. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 40, 443–474 (1995).

    Article 

    Google Scholar 

  • Nyasembe, V. O., Tchouassi, D. P., Pirk, C. W. W., Sole, C. L. & Torto, B. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl. Trop. Dis. 12, 1–21 (2018).

    Article 

    Google Scholar 

  • Barredo, E. & DeGennaro, M. Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol. 36, 473–484 (2020).

    Article 

    Google Scholar 

  • Stone, C. M. & Foster, W. A. Plant-sugar feeding and vectorial capacity. In Ecology of Parasite-Vector Interactions (eds Takken, W. & Koenraadt, C.) 35–79 (Wageningen Academic, 2013). https://doi.org/10.3920/978-90-8686-744-8_3.

    Chapter 

    Google Scholar 

  • Hien, D. F. D. S. et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 12, e1005773 (2016).

    Article 

    Google Scholar 

  • Stone, C., Witt, A., Walsh, G., Foster, W. & Murphy, S. Would the control of invasive alien plants reduce malaria transmission? A review. Parasites Vectors 11, 1–18 (2018).

    Article 

    Google Scholar 

  • Ebrahimi, B. et al. Alteration of plant species assemblages can decrease the transmission potential of malaria mosquitoes. J. Appl. Ecol. 55, 841–851 (2018).

    Article 

    Google Scholar 

  • Manda, H. et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med. Vet. Entomol. 21, 103–111 (2007).

    Article 

    Google Scholar 

  • Nyasembe, V. O. et al. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake. Curr. Biol. 24, 217–221 (2014).

    Article 

    Google Scholar 

  • Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).

    Article 

    Google Scholar 

  • Nkya, T. E., Akhouayri, I., Kisinza, W. & David, J. P. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochem. Mol. Biol. 43, 407–416 (2013).

    Article 

    Google Scholar 

  • Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).

    Article 

    Google Scholar 

  • Bationo, C. S. et al. Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diébougou health district, Burkina Faso, 2016–2017. Sci. Rep. 11, 1–12 (2021).

    Article 

    Google Scholar 

  • Namountougou, M. et al. First report of the L1014S kdr mutation in wild populations of Anopheles gambiae M and S molecular forms in Burkina Faso (West Africa). Acta Trop. 125, 123–127 (2013).

    Article 

    Google Scholar 

  • Service, M. W. A critical review of procedures for sampling populations of adult mosquitoes. Bull. Entomol. Res. 67, 343–382 (1977).

    Article 

    Google Scholar 

  • Thiombiano, A. et al. Catalogue des plantes vasculaires du Burkina Faso. In Boissiera Vol. 65 (ed Cyrille Chatelain) (Conservatoire et Jardin botaniques, 2012).

  • Morlais, I., Ponçon, N., Simard, F., Cohuet, A. & Fontenille, D. Intraspecific nucleotide variation in Anopheles gambiae: New insights into the biology of malaria vectors. Am. J. Trop. Med. Hyg. 71, 795–802 (2004).

    Article 

    Google Scholar 

  • Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).

    Article 

    Google Scholar 

  • R Core Team. A language and environment for statistical computing (2021).

  • Crawley, M. J. The R Book (Wiley, 2007).

    Book 
    MATH 

    Google Scholar 

  • Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means (2021).

  • Hien, A. et al. Evidence supporting deployment of next generation insecticide treated nets in Burkina Faso: Bioassays with either chlorfenapyr or piperonyl butoxide increase mortality of pyrethroid-resistant Anopheles gambiae. Malar. J. 20, 1–13 (2021).

    Article 

    Google Scholar 

  • Nicolson, S. W., Nepi, M. & Pacini, E. Nectaries and Nectar (Springer, Dordrecht, 2007).

    Book 

    Google Scholar 

  • Abdu-Allah, G. et al. Dietary antioxidants impact DDT resistance in Drosophila melanogaster. PLoS ONE 15, 1–12 (2020).

    Article 

    Google Scholar 

  • Gnankiné, O. & Bassolé, I. L. H. N. Essential oils as an alternative to pyrethroids’ resistance against Anopheles species complex giles (Diptera: Culicidae). Molecules 22, 1321 (2017).

    Article 

    Google Scholar 

  • Gendrin, M. & Christophides, G. K. The Anopheles mosquito microbiota and their impact on pathogen transmission. In Anopheles Mosquitoes—New Insights into Malar. Vectors (ed. Manguin, S.) (IntechOpen, 2013).

  • Saab, S. A. et al. The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar 

  • Dada, N., Sheth, M., Liebman, K., Pinto, J. & Lenhart, A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 8, 1–13 (2018).

    Article 

    Google Scholar 

  • Barnard, K., Jeanrenaud, A. C. S. N., Brooke, B. D. & Oliver, S. V. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 9, 1–11 (2019).

    Article 

    Google Scholar 

  • Omoke, D. et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malar. J. 20, 1–14 (2021).

    Article 

    Google Scholar 

  • Pelloquin, B. et al. Overabundance of Asaia and Serratia Bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Côte d’Ivoire. Microbiol. Spectr. 9, e00157-21 (2021).

    Article 

    Google Scholar 

  • WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (2013).

  • Owusu, H. F., Jančáryová, D., Malone, D. & Müller, P. Comparability between insecticide resistance bioassays for mosquito vectors: Time to review current methodology?. Parasites Vectors 8, 1–11 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

    Microparticles could help prevent vitamin A deficiency