in

Personality, density and habitat drive the dispersal of invasive crayfish

  • 1.

    Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D. Dispersal (Oxford University Press, 2001).

    Google Scholar 

  • 2.

    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

    Google Scholar 

  • 3.

    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).

    Google Scholar 

  • 4.

    Cote, J., Fogarty, S., Brodin, T., Weinersmith, K. & Sih, A. Personality-dependent dispersal in the invasive mosquitofish: Group composition matters. Proc. R. Soc. B Biol. Sci. 278, 1670–1678 (2011).

    Google Scholar 

  • 5.

    Quinn, J. L., Cole, E. F., Patrick, S. C. & Sheldon, B. C. Scale and state dependence of the relationship between personality and dispersal in a great tit population. J. Anim. Ecol. 80, 918–928 (2011).

    PubMed 

    Google Scholar 

  • 6.

    Brodin, T., Lind, M. I., Wiberg, M. K. & Johansson, F. Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav. Ecol. Sociobiol. 67, 135–143 (2013).

    Google Scholar 

  • 7.

    Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 199–205 (1998).

    Google Scholar 

  • 8.

    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).

    PubMed 

    Google Scholar 

  • 9.

    Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).

    PubMed 

    Google Scholar 

  • 10.

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).

    PubMed 

    Google Scholar 

  • 11.

    Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).

    PubMed 

    Google Scholar 

  • 12.

    Juette, T., Cucherousset, J. & Cote, J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 60, 417–427 (2014).

    Google Scholar 

  • 13.

    Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. 104, 15017–15022 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B Biol. Sci. 277, 1571–1579 (2010).

    Google Scholar 

  • 16.

    Malange, J., Izar, P. & Japyassú, H. Personality and behavioural syndrome in Necromys lasiurus (Rodentia: Cricetidae): Notes on dispersal and invasion processes. Acta Ethol. 19, 189–195 (2016).

    Google Scholar 

  • 17.

    Rees, E. M. A. et al. Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis) in the UK. PLoS ONE 12, e0178805 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).

    PubMed 

    Google Scholar 

  • 19.

    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).

    PubMed 

    Google Scholar 

  • 20.

    Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Gozlan, R. E., Britton, J. R., Cowx, I. & Copp, G. H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 76, 751–786 (2010).

    Google Scholar 

  • 22.

    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).

    Google Scholar 

  • 23.

    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).

    PubMed 

    Google Scholar 

  • 24.

    Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 (2015).

    Google Scholar 

  • 25.

    Duckworth, R. A. Evolution of personality: Developmental constraints on behavioral flexibility. Auk 127, 752–758 (2010).

    Google Scholar 

  • 26.

    Trillmich, F., Müller, T. & Müller, C. Understanding the evolution of personality requires the study of mechanisms behind the development and life history of personality traits. Biol. Lett. 14, 20170740 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Dingemanse, N. J. & Réale, D. Natural selection and animal personality. Behaviour 142, 1159–1184 (2005).

    Google Scholar 

  • 28.

    Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Lett. 15, 278–289 (2012).

    PubMed 

    Google Scholar 

  • 29.

    Stamps, J. A. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett. 10, 355–363 (2007).

    PubMed 

    Google Scholar 

  • 30.

    Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions?. Trends Ecol. Evol. 27, 57–64 (2012).

    PubMed 

    Google Scholar 

  • 31.

    Hirsch, P. E., Thorlacius, M., Brodin, T. & Burkhardt-Holm, P. An approach to incorporate individual personality in modeling fish dispersal across in-stream barriers. Ecol. Evol. 7, 720–732 (2017).

    PubMed 

    Google Scholar 

  • 32.

    Groen, M. et al. Is there a role for aggression in round goby invasion fronts?. Behaviour 149, 685–703 (2012).

    Google Scholar 

  • 33.

    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).

    PubMed 

    Google Scholar 

  • 34.

    Lopez, D. P., Jungman, A. A. & Rehage, J. S. Nonnative African jewelfish are more fit but not bolder at the invasion front: A trait comparison across an Everglades range expansion. Biol. Invasions 14, 2159–2174 (2012).

    Google Scholar 

  • 35.

    Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B Biol. Sci. 365, 3947–3958 (2010).

    Google Scholar 

  • 36.

    Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (University of Chicago Press, 2013).

    Google Scholar 

  • 37.

    Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).

    PubMed 

    Google Scholar 

  • 38.

    Archard, G. A. & Braithwaite, V. A. The importance of wild populations in studies of animal temperament. J. Zool. 281, 149–160 (2010).

    Google Scholar 

  • 39.

    Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).

    Google Scholar 

  • 40.

    Liedvogel, M., Chapman, B. B., Muheim, R. & Åkesson, S. The behavioural ecology of animal movement: Reflections upon potential synergies. Anim. Migr. 1, 39–46 (2013).

    Google Scholar 

  • 41.

    Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).

    PubMed 

    Google Scholar 

  • 42.

    Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshw. Biol. 51, 1359–1368 (2006).

    Google Scholar 

  • 43.

    Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).

    Google Scholar 

  • 44.

    Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).

    Google Scholar 

  • 45.

    Lindstrom, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. 110, 13452–13456 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Bubb, D. H., Thom, T. J. & Lucas, M. C. The within-catchment invasion of the non-indigenous signal crayfish Pacifastacus leniusculus (Dana), in upland rivers. Bull. Fr. Pêche Piscic. 376–377, 665–673 (2005).

    Google Scholar 

  • 47.

    Závorka, L., Lassus, R., Britton, J. R. & Cucherousset, J. Phenotypic responses of invasive species to removals affect ecosystem functioning and restoration. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15271 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 48.

    Sbragaglia, V. & Breithaupt, T. Daily activity rhythms, chronotypes, and risk-taking behavior in the signal crayfish. Curr. Zool. https://doi.org/10.1093/cz/zoab023 (2021).

    Article 

    Google Scholar 

  • 49.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).

  • 50.

    Pintor, L. M., Sih, A. & Bauer, M. L. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117, 1629–1636 (2008).

    Google Scholar 

  • 51.

    Rupia, E. J., Binning, S. A., Roche, D. G. & Lu, W. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J. Anim. Ecol. 85, 927–937 (2016).

    PubMed 

    Google Scholar 

  • 52.

    Karavanich, C. & Atema, J. Individual recognition and memory in lobster dominance. Anim. Behav. 56, 1553–1560 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Houlihan, D., Govind, C. & El Haj, A. Energetics of swimming in Callinectes sapidus and walking in Homarus americanus. Comp. Biochem. Physiol. Part A Physiol. 82, 267–279 (1985).

    Google Scholar 

  • 54.

    Vogt, G. Functional anatomy. In Biology of Freshwater Crayfish (ed. Holdich, D. M.) 53–151 (Blackwell Science Ltd., 2002).

    Google Scholar 

  • 55.

    Southwood, T. R. E. & Henderson, P. A. Ecological Methods (Blackwell Science Ltd., 2000).

    Google Scholar 

  • 56.

    Clark, J. & Kershner, M. Size-dependent effects of visible implant elastomer marking on crayfish (Orconectes obscurus) growth, mortality, and tag retention. Crustaceana 79, 275–284 (2006).

    Google Scholar 

  • 57.

    Streissl, F. & Hödl, W. Habitat and shelter requirements of the stone crayfish, Austropotamobius torrentium Schrank. Hydrobiologia 477, 195–199 (2002).

    Google Scholar 

  • 58.

    Chadwick, D. D. A. et al. A novel ‘triple drawdown’ method highlights deficiencies in invasive alien crayfish survey and control techniques. J. Appl. Ecol. 58, 316–326 (2021).

    Google Scholar 

  • 59.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Google Scholar 

  • 60.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet 
    MATH 

    Google Scholar 

  • 61.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).

    Google Scholar 

  • 62.

    Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).

    Google Scholar 

  • 63.

    Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).

    Google Scholar 

  • 64.

    Robinson, C. A., Thom, T. J. & Lucas, M. C. Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshw. Biol. 44, 509–521 (2000).

    Google Scholar 

  • 65.

    Bubb, D. H., O’Malley, O. J., Gooderham, A. C. & Lucas, M. C. Relative impacts of native and non-native crayfish on shelter use by an indigenous benthic fish. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 448–455 (2009).

    Google Scholar 

  • 66.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).

    Google Scholar 

  • 67.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 68.

    Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6. (2019).

  • 69.

    Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, 2008).

    MATH 

    Google Scholar 

  • 70.

    Edwards, D. D., Rapin, K. E. & Moore, P. A. Linking phenotypic correlations from a diverse set of laboratory tests to field behaviors in the crayfish, Orconectes virilis. Ethology 124, 311–330 (2018).

    Google Scholar 

  • 71.

    Teknomo, K. Similarity Measurements. https://people.revoledu.com/kardi/tutorial/Similarity (2015).

  • 72.

    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Vainikka, A., Rantala, M. J., Niemelä, P., Hirvonen, H. & Kortet, R. Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol. 14, 17–25 (2011).

    Google Scholar 

  • 74.

    Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N. & Skalski, G. T. Explaining leptokurtic movement distributions: Intrapopulation variation in boldness and exploration. Am. Nat. 158, 124–135 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L. & Drent, P. J. Natal dispersal and personalities in great tits (Parus major). Proc. R. Soc. London. Ser. B Biol. Sci. 270, 741–747 (2003).

    Google Scholar 

  • 76.

    McMahon, T. E. & Tash, J. C. Experimental analysis of the role of emigration in population regulation of desert pupfish. Ecology 69, 1871–1883 (1988).

    Google Scholar 

  • 77.

    Porter, J. H. & Dooley, J. L. Animal dispersal patterns: A reassessment of simple mathematical models. Ecology 74, 2436–2443 (1993).

    Google Scholar 

  • 78.

    Einum, S., Sundt-Hansen, L. & Nislow, K. H. The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos 113, 489–496 (2006).

    Google Scholar 

  • 79.

    Lodge, D. M. & Hill, A. M. Factors governing species composition, population size and productivity of coolwater crayfishes. Nord. J. Freshw. Res. 69, 111–136 (1994).

    Google Scholar 

  • 80.

    Berthouly-Salazar, C., van Rensburg, B. J., Le Roux, J. J., van Vuuren, B. J. & Hui, C. Spatial sorting drives morphological variation in the invasive bird, Acridotheris tristis. PLoS ONE 7, e38145 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).

    Google Scholar 

  • 82.

    Wilshin, S. et al. Limping following limb loss increases locomotor stability. J. Exp. Biol. 221, jeb174268 (2018).

    PubMed 

    Google Scholar 

  • 83.

    Podgorniak, T., Blanchet, S., De Oliveira, E., Daverat, F. & Pierron, F. To boldly climb: Behavioural and cognitive differences in migrating European glass eels. R. Soc. Open Sci. 3, 150665 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can. J. Zool. 84, 1202–1209 (2006).

    Google Scholar 

  • 85.

    Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).

    Google Scholar 

  • 86.

    Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshw. Biol. 49, 357–368 (2004).

    Google Scholar 

  • 87.

    Hudina, S., Kutleša, P., Trgovčić, K. & Duplić, A. Dynamics of range expansion of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region in Croatia. Aquat. Invasions 12, 67–75 (2017).

    Google Scholar 

  • 88.

    Wutz, S. & Geist, J. Sex- and size-specific migration patterns and habitat preferences of invasive signal crayfish (Pacifastacus leniusculus Dana). Limnologica 43, 59–66 (2013).

    Google Scholar 

  • 89.

    Fraser, H., Barnett, A., Parker, T. H. & Fidler, F. The role of replication studies in ecology. Ecol. Evol. 10, 5197–5207 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Linzmaier, S. M., Goebel, L. S., Ruland, F. & Jeschke, J. M. Behavioral differences in an over-invasion scenario: marbled vs. spiny-cheek crayfish. Ecosphere 9, e02385 (2018).

    Google Scholar 

  • 91.

    Wang, X. et al. Anthropogenic habitat loss accelerates the range expansion of a global invader. Divers. Distrib. https://doi.org/10.1111/ddi.13359 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

    Deep learning increases the availability of organism photographs taken by citizens in citizen science programs