in

Population collapse of a Gondwanan conifer follows the loss of Indigenous fire regimes in a northern Australian savanna

  • Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bowman, D. M. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    ADS 

    Google Scholar 

  • Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).

    Google Scholar 

  • Steffensen, V. Fire Country: How Indigenous Fire Management Could Help Save Australia (Hardie Grant Books, 2020).

    Google Scholar 

  • Australian Government, Royal Commission into National Natural Disaster Arrangements. Commonwealth Letters Patent—20 February, 2020. https://naturaldisaster.royalcommission.gov.au/publications/commonwealth-letters-patent-20-february-2020 (2020).

  • Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. New Phytol. 140, 385–410 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Roos, C. I., Williamson, G. J. & Bowman, D. M. Is anthropogenic pyrodiversity invisible in paleofire records?. Fire 2, 42 (2019).

    Google Scholar 

  • Liebmann, M. J. et al. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE. Proc. Natl. Acad. Sci. 113, E696–E704 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fletcher, M.-S., Hamilton, R., Dressler, W. & Palmer, L. Indigenous knowledge and the shackles of wilderness. Proc. Natl. Acad. Sci. 118, e2022218118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomson, D. F. Arnhem land: Explorations among an unknown people part I. The journey to Bennet Bay. Geogr. J. 112, 146–164. https://doi.org/10.2307/1789695 (1948).

    Article 

    Google Scholar 

  • Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: A tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).

    Google Scholar 

  • Jones, G. M. & Tingley, M. W. Pyrodiversity and biodiversity: A history, synthesis, and outlook. Divers. Distrib. 28, 386–403 (2021).

    Google Scholar 

  • Steel, Z. L., Collins, B. M., Sapsis, D. B. & Stephens, S. L. Quantifying pyrodiversity and its drivers. Proc. R. Soc. B 288, 20203202 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B: Biol. Sci. 280, 20132297 (2013).

    Google Scholar 

  • Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207–223 (2004).

    Google Scholar 

  • Haynes, C. D. in Proceedings of the Ecological Society of Australia (Australia) (Darwin Institute of Technology).

  • Murphy, B. P. & Bowman, D. M. The interdependence of fire, grass, kangaroos and Australian Aborigines: A case study from central Arnhem Land, northern Australia. J. Biogeogr. 34, 237–250 (2007).

    Google Scholar 

  • Bowman, D., Garde, M. & Saulwick, A. in Histories of Old Ages: Essays in Honour of Rhys Jones (eds Anderson, A. et al.) 61–78 (Australian National University, 2001).

  • Bowman, D. & Panton, W. Decline of Callitris intratropica RT Baker & HG Smith in the Northern Territory: Implications for pre-and post-European colonization fire regimes. J. Biogeogr. 20, 373–381 (1993).

    Google Scholar 

  • Sharp, B. R. & Bowman, D. M. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. J. Trop. Ecol. 20, 259–270 (2004).

    Google Scholar 

  • Trauernicht, C., Murphy, B. P., Tangalin, N. & Bowman, D. M. Cultural legacies, fire ecology, and environmental change in the Stone Country of Arnhem Land and Kakadu National Park, Australia. Ecol. Evol. 3, 286–297 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, A. C. & Russell-Smith, J. Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: Implications for management. Int. J. Wildland Fire 18, 127–146 (2009).

    Google Scholar 

  • Yates, C. & Russell-Smith, J. Fire regimes and vegetation sensitivity analysis: An example from Bradshaw Station, monsoonal northern Australia. Int. J. Wildland Fire 12, 349–358 (2003).

    Google Scholar 

  • McVicar, D. Reports Concerning Marketable Timbers and Forest Products of Several Regions of the North-West Part of the State (WA Forests Department, 1922).

    Google Scholar 

  • Bowman, D. M., Price, O., Whitehead, P. J. & Walsh, A. The ‘wilderness effect’ and the decline of Callitris intratropica on the Arnhem Land Plateau, northern Australia. Aust. J. Bot. 49, 665–672 (2001).

    Google Scholar 

  • Prior, L. D., McCaw, W. L., Grierson, P. F., Murphy, B. P. & Bowman, D. M. Population structures of the widespread Australian conifer Callitris columellaris are a bio-indicator of continental environmental change. For. Ecol. Manag. 262, 252–262 (2011).

    Google Scholar 

  • Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185–4194 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057–2069 (2011).

    Google Scholar 

  • Bowman, D. M., Haverkamp, C., Rann, K. D. & Prior, L. D. Differential demographic filtering by surface fires: How fuel type and fuel load affect sapling mortality of an obligate seeder savanna tree. J. Ecol. 106, 1010–1022 (2018).

    Google Scholar 

  • Trauernicht, C., Murphy, B. P., Prior, L. D., Lawes, M. J. & Bowman, D. M. Human-imposed, fine-grained patch burning explains the population stability of a fire-sensitive conifer in a frequently burnt northern Australia savanna. Ecosystems 19, 896–909 (2016).

    Google Scholar 

  • Bininj Kunwok Regional Language Centre. https://bininjkunwok.org.au (2021).

  • Cooke, P. M. Buffalo and tin, baki and Jesus. In Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition (eds Russell-Smith, J. et al.) 69–83 (Csiro Publishing, 2009).

    Google Scholar 

  • Edwards, A. et al. Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. J. Environ. Manag. 290, 112568 (2021).

    Google Scholar 

  • Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tobler, R. et al. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544, 180–184 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Press, T., Lea, D., Webb, A. & Alistair, G. Kakadu Natural and Cultural Heritage and Management (The Australian National University, 1995).

    Google Scholar 

  • Murphy, B. P., Cochrane, M. A. & Russell-Smith, J. Prescribed burning protects endangered tropical heathlands of the Arnhem Plateau, northern Australia. J. Appl. Ecol. 52, 980–991 (2015).

    Google Scholar 

  • Russell-Smith, J., Needham, S. & Brock, J. in Kakadu: Natural and Cultural Heritage and Management (eds A. J. Press et al.) 128–166 (Australian National University, 1995).

  • Haynes, C., Ridpath, M. & Williams, M. A. Monsoonal Australia: Landscape, Ecology and Man in Northern Lowlands (CRC Press, 1991).

    Google Scholar 

  • Bowman, D. M. et al. Biogeography of the Australian monsoon tropics. J. Biogeogr. 37, 201–216 (2010).

    Google Scholar 

  • Williamson, G. J. et al. Measurement of inter-and intra-annual variability of landscape fire activity at a continental scale: The Australian case. Environ. Res. Lett. 11, 035003 (2016).

    ADS 

    Google Scholar 

  • Russell-Smith, J. et al. Bushfires down under: Patterns and implications of contemporary Australian landscape burning. Int. J. Wildland Fire 16, 361–377. https://doi.org/10.1071/WF07018 (2007).

    Article 

    Google Scholar 

  • Evans, J. & Russell-Smith, J. Delivering effective savanna fire management for defined biodiversity conservation outcomes: An Arnhem Land case study. Int. J. Wildland Fire 29, 386–400 (2019).

    Google Scholar 

  • Corey, B. et al. Better biodiversity accounting is needed to prevent bioperversity and maximize co-benefits from savanna burning. Conserv. Lett. 13, e12685 (2020).

    Google Scholar 

  • Crisp, M. D. et al. Turnover of southern cypresses in the post-Gondwanan world: Extinction, transoceanic dispersal, adaptation and rediversification. New Phytol. 221, 2308–2319 (2019).

    PubMed 

    Google Scholar 

  • Prior, L. D. & Bowman, D. M. Classification of post-fire responses of woody plants to include pyrophobic communities. Fire 3, 15 (2020).

    Google Scholar 

  • Brodribb, T. J. et al. Conservative water management in the widespread conifer genus Callitris. AoB Plants 5, plt052 (2013).

    PubMed Central 

    Google Scholar 

  • Sakaguchi, S. et al. Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia. Proc. R. Soc. B: Biol. Sci. 280, 20132182 (2013).

    Google Scholar 

  • Allen, K. J. et al. Two climate-sensitive tree-ring chronologies from Arnhem Land, monsoonal Australia. Austral Ecol. 44, 581–596 (2019).

    Google Scholar 

  • Baker, P. J., Palmer, J. G. & D’Arrigo, R. The dendrochronology of Callitris intratropica in northern Australia: Annual ring structure, chronology development and climate correlations. Aust. J. Bot. 56, 311–320 (2008).

    Google Scholar 

  • Hammer, G. Site classification and tree diameter-height-age relationships for cypress pine in the Top End of the Northern Territory. Aust. For. 44, 35–41 (1981).

    ADS 

    Google Scholar 

  • Prior, L., Bowman, D. & Brook, B. Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecol. Res. 22, 228–236 (2007).

    Google Scholar 

  • Stocker, G. Aspects of the Seeding Habits of Callitris intratropica (Forestry and Timber Bureau, 1966).

    Google Scholar 

  • Bowman, D., Wilson, B. & Davis, G. Response of Callitris intratropica RT Baker & HG Smith to fire protection, Murgenella, northern Australia. Aust. J. Ecol. 13, 147–159 (1988).

    Google Scholar 

  • Hawkins, P. Seed production and litter fall studies of Callitris columellaris. Aust. For. Res. 2, 3–16 (1966).

    Google Scholar 

  • Lawes, M. J., Taplin, P., Bellairs, S. M. & Franklin, D. C. A trade-off in stand size effects in the reproductive biology of a declining tropical conifer Callitris intratropica. Plant Ecol. 214, 169–174 (2013).

    Google Scholar 

  • Petty, A. M. & Bowman, D. M. A satellite analysis of contrasting fire patterns in aboriginal-and euro-Australian lands in tropical North Australia. Fire Ecol. 3, 32–47 (2007).

    Google Scholar 

  • Bowman, D. & Prior, L. Impact of Aboriginal landscape burning on woody vegetation in Eucalyptus tetrodonta savanna in Arnhem Land, northern Australia. J. Biogeogr. 31, 807–817 (2004).

    Google Scholar 

  • Trauernicht, C., Murphy, B. P., Portner, T. E. & Bowman, D. M. Tree cover–fire interactions promote the persistence of a fire-sensitive conifer in a highly flammable savanna. J. Ecol. 100, 958–968 (2012).

    Google Scholar 

  • Russell-Smith, J. Recruitment dynamics of the long-lived obligate seeders Callitris intratropica (Cupressaceae) and Petraeomyrtus punicea (Myrtaceae). Aust. J. Bot. 54, 479–485 (2006).

    Google Scholar 

  • Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23, 63–87 (1992).

    Google Scholar 

  • Bowman, D. M., Franklin, D. C., Price, O. F. & Brook, B. W. Land management affects grass biomass in the Eucalyptus tetrodonta savannas of monsoonal Australia. Austral Ecol. 32, 446–452 (2007).

    Google Scholar 

  • Cochrane, M. A. & Bowman, D. M. Manage fire regimes, not fires. Nat. Geosci. 14, 1–3 (2021).

    Google Scholar 

  • Huffman, M. R. The many elements of traditional fire knowledge: Synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).

    Google Scholar 

  • Roos, C. I. et al. Native American fire management at an ancient wildland–urban interface in the Southwest United States. Proc. Natl. Acad. Sci. 118, e2018733118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long, J. W., Lake, F. K. & Goode, R. W. The importance of Indigenous cultural burning in forested regions of the Pacific West, USA. For. Ecol. Manag. 500, 119597 (2021).

    Google Scholar 

  • Lake, F. K. et al. Returning fire to the land: Celebrating traditional knowledge and fire. J. For. 115, 343–353 (2017).

    ADS 

    Google Scholar 

  • Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 35, 140–162 (2015).

    Google Scholar 

  • Bird, R. B. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, 1050–1052 (2018).

    Google Scholar 

  • Bowman, D. M. & Legge, S. Pyrodiversity—Why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848–853 (2016).

    Google Scholar 

  • Trisos, C. H., Auerbach, J. & Katti, M. Decoloniality and anti-oppressive practices for a more ethical ecology. Nat. Ecol. Evol. 5, 1–8 (2021).

    Google Scholar 

  • Department of Environment and Science, Q. G. Seasonal Surface Reflectance—Landsat, JRSRP Algorithm, Australia Coverage Dataset Version 1.0.0. https://portal.tern.org.au/seasonal-surface-reflectance-australia-coverage/22021 (2014).

  • Key, C. & Benson, N. Landscape Assessment (LA) Sampling and Analysis Methods (USDA Forest Service, 2006).

    Google Scholar 

  • Edwards, A. C., Russell-Smith, J. & Maier, S. W. A comparison and validation of satellite-derived fire severity mapping techniques in fire prone north Australian savannas: Extreme fires and tree stem mortality. Remote Sens. Environ. 206, 287–299 (2018).

    ADS 

    Google Scholar 

  • Bowman, D. M., Zhang, Y., Walsh, A. & Williams, R. Experimental comparison of four remote sensing techniques to map tropical savanna fire-scars using Landsat-TM imagery. Int. J. Wildland Fire 12, 341–348 (2003).

    Google Scholar 

  • Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).

    Google Scholar 

  • Koenker, R. quantreg: Quantile Regression. R package version 5.05 (R Foundation for Statistical Computing). http://CRAN.R-project.org/package=quantreg (2013).

  • Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Dating (University of Chicago Press, 1968).

    Google Scholar 

  • Geoscience Australia. Surface Geology of Australia 1:1 Million Scale Dataset 2012 Edition. https://data.gov.au/data/dataset/surface-geology-of-australia-1-1-million-scale-dataset-2012-edition.

  • Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes

    Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020