in

Population collapse of a Gondwanan conifer follows the loss of Indigenous fire regimes in a northern Australian savanna

  • Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bowman, D. M. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    ADS 

    Google Scholar 

  • Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).

    Google Scholar 

  • Steffensen, V. Fire Country: How Indigenous Fire Management Could Help Save Australia (Hardie Grant Books, 2020).

    Google Scholar 

  • Australian Government, Royal Commission into National Natural Disaster Arrangements. Commonwealth Letters Patent—20 February, 2020. https://naturaldisaster.royalcommission.gov.au/publications/commonwealth-letters-patent-20-february-2020 (2020).

  • Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. New Phytol. 140, 385–410 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Roos, C. I., Williamson, G. J. & Bowman, D. M. Is anthropogenic pyrodiversity invisible in paleofire records?. Fire 2, 42 (2019).

    Google Scholar 

  • Liebmann, M. J. et al. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE. Proc. Natl. Acad. Sci. 113, E696–E704 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fletcher, M.-S., Hamilton, R., Dressler, W. & Palmer, L. Indigenous knowledge and the shackles of wilderness. Proc. Natl. Acad. Sci. 118, e2022218118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomson, D. F. Arnhem land: Explorations among an unknown people part I. The journey to Bennet Bay. Geogr. J. 112, 146–164. https://doi.org/10.2307/1789695 (1948).

    Article 

    Google Scholar 

  • Yibarbuk, D. et al. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: A tradition of ecosystem management. J. Biogeogr. 28, 325–343 (2001).

    Google Scholar 

  • Jones, G. M. & Tingley, M. W. Pyrodiversity and biodiversity: A history, synthesis, and outlook. Divers. Distrib. 28, 386–403 (2021).

    Google Scholar 

  • Steel, Z. L., Collins, B. M., Sapsis, D. B. & Stephens, S. L. Quantifying pyrodiversity and its drivers. Proc. R. Soc. B 288, 20203202 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B: Biol. Sci. 280, 20132297 (2013).

    Google Scholar 

  • Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207–223 (2004).

    Google Scholar 

  • Haynes, C. D. in Proceedings of the Ecological Society of Australia (Australia) (Darwin Institute of Technology).

  • Murphy, B. P. & Bowman, D. M. The interdependence of fire, grass, kangaroos and Australian Aborigines: A case study from central Arnhem Land, northern Australia. J. Biogeogr. 34, 237–250 (2007).

    Google Scholar 

  • Bowman, D., Garde, M. & Saulwick, A. in Histories of Old Ages: Essays in Honour of Rhys Jones (eds Anderson, A. et al.) 61–78 (Australian National University, 2001).

  • Bowman, D. & Panton, W. Decline of Callitris intratropica RT Baker & HG Smith in the Northern Territory: Implications for pre-and post-European colonization fire regimes. J. Biogeogr. 20, 373–381 (1993).

    Google Scholar 

  • Sharp, B. R. & Bowman, D. M. Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. J. Trop. Ecol. 20, 259–270 (2004).

    Google Scholar 

  • Trauernicht, C., Murphy, B. P., Tangalin, N. & Bowman, D. M. Cultural legacies, fire ecology, and environmental change in the Stone Country of Arnhem Land and Kakadu National Park, Australia. Ecol. Evol. 3, 286–297 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, A. C. & Russell-Smith, J. Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: Implications for management. Int. J. Wildland Fire 18, 127–146 (2009).

    Google Scholar 

  • Yates, C. & Russell-Smith, J. Fire regimes and vegetation sensitivity analysis: An example from Bradshaw Station, monsoonal northern Australia. Int. J. Wildland Fire 12, 349–358 (2003).

    Google Scholar 

  • McVicar, D. Reports Concerning Marketable Timbers and Forest Products of Several Regions of the North-West Part of the State (WA Forests Department, 1922).

    Google Scholar 

  • Bowman, D. M., Price, O., Whitehead, P. J. & Walsh, A. The ‘wilderness effect’ and the decline of Callitris intratropica on the Arnhem Land Plateau, northern Australia. Aust. J. Bot. 49, 665–672 (2001).

    Google Scholar 

  • Prior, L. D., McCaw, W. L., Grierson, P. F., Murphy, B. P. & Bowman, D. M. Population structures of the widespread Australian conifer Callitris columellaris are a bio-indicator of continental environmental change. For. Ecol. Manag. 262, 252–262 (2011).

    Google Scholar 

  • Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185–4194 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057–2069 (2011).

    Google Scholar 

  • Bowman, D. M., Haverkamp, C., Rann, K. D. & Prior, L. D. Differential demographic filtering by surface fires: How fuel type and fuel load affect sapling mortality of an obligate seeder savanna tree. J. Ecol. 106, 1010–1022 (2018).

    Google Scholar 

  • Trauernicht, C., Murphy, B. P., Prior, L. D., Lawes, M. J. & Bowman, D. M. Human-imposed, fine-grained patch burning explains the population stability of a fire-sensitive conifer in a frequently burnt northern Australia savanna. Ecosystems 19, 896–909 (2016).

    Google Scholar 

  • Bininj Kunwok Regional Language Centre. https://bininjkunwok.org.au (2021).

  • Cooke, P. M. Buffalo and tin, baki and Jesus. In Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition (eds Russell-Smith, J. et al.) 69–83 (Csiro Publishing, 2009).

    Google Scholar 

  • Edwards, A. et al. Transforming fire management in northern Australia through successful implementation of savanna burning emissions reductions projects. J. Environ. Manag. 290, 112568 (2021).

    Google Scholar 

  • Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tobler, R. et al. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544, 180–184 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Press, T., Lea, D., Webb, A. & Alistair, G. Kakadu Natural and Cultural Heritage and Management (The Australian National University, 1995).

    Google Scholar 

  • Murphy, B. P., Cochrane, M. A. & Russell-Smith, J. Prescribed burning protects endangered tropical heathlands of the Arnhem Plateau, northern Australia. J. Appl. Ecol. 52, 980–991 (2015).

    Google Scholar 

  • Russell-Smith, J., Needham, S. & Brock, J. in Kakadu: Natural and Cultural Heritage and Management (eds A. J. Press et al.) 128–166 (Australian National University, 1995).

  • Haynes, C., Ridpath, M. & Williams, M. A. Monsoonal Australia: Landscape, Ecology and Man in Northern Lowlands (CRC Press, 1991).

    Google Scholar 

  • Bowman, D. M. et al. Biogeography of the Australian monsoon tropics. J. Biogeogr. 37, 201–216 (2010).

    Google Scholar 

  • Williamson, G. J. et al. Measurement of inter-and intra-annual variability of landscape fire activity at a continental scale: The Australian case. Environ. Res. Lett. 11, 035003 (2016).

    ADS 

    Google Scholar 

  • Russell-Smith, J. et al. Bushfires down under: Patterns and implications of contemporary Australian landscape burning. Int. J. Wildland Fire 16, 361–377. https://doi.org/10.1071/WF07018 (2007).

    Article 

    Google Scholar 

  • Evans, J. & Russell-Smith, J. Delivering effective savanna fire management for defined biodiversity conservation outcomes: An Arnhem Land case study. Int. J. Wildland Fire 29, 386–400 (2019).

    Google Scholar 

  • Corey, B. et al. Better biodiversity accounting is needed to prevent bioperversity and maximize co-benefits from savanna burning. Conserv. Lett. 13, e12685 (2020).

    Google Scholar 

  • Crisp, M. D. et al. Turnover of southern cypresses in the post-Gondwanan world: Extinction, transoceanic dispersal, adaptation and rediversification. New Phytol. 221, 2308–2319 (2019).

    PubMed 

    Google Scholar 

  • Prior, L. D. & Bowman, D. M. Classification of post-fire responses of woody plants to include pyrophobic communities. Fire 3, 15 (2020).

    Google Scholar 

  • Brodribb, T. J. et al. Conservative water management in the widespread conifer genus Callitris. AoB Plants 5, plt052 (2013).

    PubMed Central 

    Google Scholar 

  • Sakaguchi, S. et al. Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia. Proc. R. Soc. B: Biol. Sci. 280, 20132182 (2013).

    Google Scholar 

  • Allen, K. J. et al. Two climate-sensitive tree-ring chronologies from Arnhem Land, monsoonal Australia. Austral Ecol. 44, 581–596 (2019).

    Google Scholar 

  • Baker, P. J., Palmer, J. G. & D’Arrigo, R. The dendrochronology of Callitris intratropica in northern Australia: Annual ring structure, chronology development and climate correlations. Aust. J. Bot. 56, 311–320 (2008).

    Google Scholar 

  • Hammer, G. Site classification and tree diameter-height-age relationships for cypress pine in the Top End of the Northern Territory. Aust. For. 44, 35–41 (1981).

    ADS 

    Google Scholar 

  • Prior, L., Bowman, D. & Brook, B. Growth and survival of two north Australian relictual tree species, Allosyncarpia ternata (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecol. Res. 22, 228–236 (2007).

    Google Scholar 

  • Stocker, G. Aspects of the Seeding Habits of Callitris intratropica (Forestry and Timber Bureau, 1966).

    Google Scholar 

  • Bowman, D., Wilson, B. & Davis, G. Response of Callitris intratropica RT Baker & HG Smith to fire protection, Murgenella, northern Australia. Aust. J. Ecol. 13, 147–159 (1988).

    Google Scholar 

  • Hawkins, P. Seed production and litter fall studies of Callitris columellaris. Aust. For. Res. 2, 3–16 (1966).

    Google Scholar 

  • Lawes, M. J., Taplin, P., Bellairs, S. M. & Franklin, D. C. A trade-off in stand size effects in the reproductive biology of a declining tropical conifer Callitris intratropica. Plant Ecol. 214, 169–174 (2013).

    Google Scholar 

  • Petty, A. M. & Bowman, D. M. A satellite analysis of contrasting fire patterns in aboriginal-and euro-Australian lands in tropical North Australia. Fire Ecol. 3, 32–47 (2007).

    Google Scholar 

  • Bowman, D. & Prior, L. Impact of Aboriginal landscape burning on woody vegetation in Eucalyptus tetrodonta savanna in Arnhem Land, northern Australia. J. Biogeogr. 31, 807–817 (2004).

    Google Scholar 

  • Trauernicht, C., Murphy, B. P., Portner, T. E. & Bowman, D. M. Tree cover–fire interactions promote the persistence of a fire-sensitive conifer in a highly flammable savanna. J. Ecol. 100, 958–968 (2012).

    Google Scholar 

  • Russell-Smith, J. Recruitment dynamics of the long-lived obligate seeders Callitris intratropica (Cupressaceae) and Petraeomyrtus punicea (Myrtaceae). Aust. J. Bot. 54, 479–485 (2006).

    Google Scholar 

  • Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23, 63–87 (1992).

    Google Scholar 

  • Bowman, D. M., Franklin, D. C., Price, O. F. & Brook, B. W. Land management affects grass biomass in the Eucalyptus tetrodonta savannas of monsoonal Australia. Austral Ecol. 32, 446–452 (2007).

    Google Scholar 

  • Cochrane, M. A. & Bowman, D. M. Manage fire regimes, not fires. Nat. Geosci. 14, 1–3 (2021).

    Google Scholar 

  • Huffman, M. R. The many elements of traditional fire knowledge: Synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).

    Google Scholar 

  • Roos, C. I. et al. Native American fire management at an ancient wildland–urban interface in the Southwest United States. Proc. Natl. Acad. Sci. 118, e2018733118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long, J. W., Lake, F. K. & Goode, R. W. The importance of Indigenous cultural burning in forested regions of the Pacific West, USA. For. Ecol. Manag. 500, 119597 (2021).

    Google Scholar 

  • Lake, F. K. et al. Returning fire to the land: Celebrating traditional knowledge and fire. J. For. 115, 343–353 (2017).

    ADS 

    Google Scholar 

  • Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 35, 140–162 (2015).

    Google Scholar 

  • Bird, R. B. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, 1050–1052 (2018).

    Google Scholar 

  • Bowman, D. M. & Legge, S. Pyrodiversity—Why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848–853 (2016).

    Google Scholar 

  • Trisos, C. H., Auerbach, J. & Katti, M. Decoloniality and anti-oppressive practices for a more ethical ecology. Nat. Ecol. Evol. 5, 1–8 (2021).

    Google Scholar 

  • Department of Environment and Science, Q. G. Seasonal Surface Reflectance—Landsat, JRSRP Algorithm, Australia Coverage Dataset Version 1.0.0. https://portal.tern.org.au/seasonal-surface-reflectance-australia-coverage/22021 (2014).

  • Key, C. & Benson, N. Landscape Assessment (LA) Sampling and Analysis Methods (USDA Forest Service, 2006).

    Google Scholar 

  • Edwards, A. C., Russell-Smith, J. & Maier, S. W. A comparison and validation of satellite-derived fire severity mapping techniques in fire prone north Australian savannas: Extreme fires and tree stem mortality. Remote Sens. Environ. 206, 287–299 (2018).

    ADS 

    Google Scholar 

  • Bowman, D. M., Zhang, Y., Walsh, A. & Williams, R. Experimental comparison of four remote sensing techniques to map tropical savanna fire-scars using Landsat-TM imagery. Int. J. Wildland Fire 12, 341–348 (2003).

    Google Scholar 

  • Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).

    Google Scholar 

  • Koenker, R. quantreg: Quantile Regression. R package version 5.05 (R Foundation for Statistical Computing). http://CRAN.R-project.org/package=quantreg (2013).

  • Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Dating (University of Chicago Press, 1968).

    Google Scholar 

  • Geoscience Australia. Surface Geology of Australia 1:1 Million Scale Dataset 2012 Edition. https://data.gov.au/data/dataset/surface-geology-of-australia-1-1-million-scale-dataset-2012-edition.


  • Source: Ecology - nature.com

    Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential

    Ploidy dynamics in aphid host cells harboring bacterial symbionts