in

Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series

  • Carson, R. The Sea Around Us. Oxford University Press, Oxford, UK 1951.

  • Beverton, R. J. H. & Holt, S. J. A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In: Ciba Foundation Symposium – The Lifespan of Animals (Colloquia on Ageing, Vol. 5) 142–180 (John Wiley & Sons, Ltd, 2008).

  • Kiørboe, T., Visser, A. & Andersen, K. H. A trait-based approach to ocean ecology. ICES Journal of Marine Science 75, 1849–1863 (2018).

    Article 

    Google Scholar 

  • Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology 22, 241–253 (2006).

    Article 

    Google Scholar 

  • Juan-Jordá, M. J., Mosqueira, I., Freire, J. & Dulvy, N. K. Life in 3-D: Life history strategies in tunas, mackerels and bonitos. Reviews in Fish Biology and Fisheries 23, 135–155 (2012).

    Article 

    Google Scholar 

  • Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Scientific Reports 9 (2019).

  • Pauly, D. Tropical fishes: patterns and propensities. Journal of Fish Biology 53, 1–17 (1998).

    ADS 

    Google Scholar 

  • Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proceedings of the National Academy of Sciences 106, 13860–13864 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11, 149–158 (2010).

    Article 

    Google Scholar 

  • Froese, R. & Pauly, D. FishBase https://fishbase.org/ (2021).

  • Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American Fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49, 2196–2218 (1992).

    Article 

    Google Scholar 

  • Cortés, E. Life History patterns and correlations in sharks. Reviews in Fisheries Science 8, 299–344 (2000).

    Article 

    Google Scholar 

  • Juan-Jordá, M. J., Mosqueira, I., Freire, J., Ferrer-Jordá, E. & Dulvy, N. K. Global scombrid life history data set. Ecology 97, 809–809 (2016).

    Article 

    Google Scholar 

  • Kindsvater, H. K., Mangel, M., Reynolds, J. D. & Dulvy, N. K. Ten principles from evolutionary ecology essential for effective marine conservation. Ecology and Evolution 6, 2125–2138 (2016).

    Article 

    Google Scholar 

  • Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends in Ecology & Evolution 33, 676–688 (2018).

    Article 

    Google Scholar 

  • Ricard, D., Minto, C., Jensen, O. P. & Baum, J. K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish and Fisheries 13, 380–398 (2011).

    Article 

    Google Scholar 

  • Maureaud, A. et al. Are we ready to track climate‐driven shifts in marine species across international boundaries? ‐ A global survey of scientific bottom trawl data. Global Change Biology 27, 220–236 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA-A decision‐support tool applied to pelagic sharks. Conservation Letters 13 (2019).

  • McAllister, M. K., Pikitch, E. K. & Babcock, E. A. Using demographic methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and implications for stock rebuilding. Canadian Journal of Fisheries and Aquatic Sciences 58, 1871–1890 (2001).

    Article 

    Google Scholar 

  • Froese, R., Demirel, N., Coro, G. & Kleisner, K. M. & Winker, H. Estimating fisheries reference points from catch and resilience. Fish and Fisheries 18, 506–526 (2016).

    Article 

    Google Scholar 

  • Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Article 

    Google Scholar 

  • Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Scientific Data 4 (2017).

  • Inchausti, P. & Halley, J. Investigating Long-Term Ecological Variability Using the Global Population Dynamics Database. Science 293, 655–657 (2001).

    CAS 
    Article 

    Google Scholar 

  • Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology 23, 317–327 (2009).

    Article 

    Google Scholar 

  • Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecological Applications 27, 2262–2276 (2017).

    Article 

    Google Scholar 

  • Heinicke, S. et al. Advancing conservation planning for western chimpanzees using IUCN SSC A.P.E.S.-the case of a taxon-specific database. Environmental Research Letters 14, 064001 (2019).

    ADS 
    Article 

    Google Scholar 

  • Horswill, C. et al. Global reconstruction of life‐history strategies: A case study using tunas. Journal of Applied Ecology 56, 855–865 (2019).

    Article 

    Google Scholar 

  • Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data‐integrated life‐history model. Fish and Fisheries 21, 237–251 (2019).

    Article 

    Google Scholar 

  • Brown, C. J. & Roff, G. Life-history traits inform population trends when assessing the conservation status of a declining tiger shark population. Biological Conservation 239, 108230 (2019).

    Article 

    Google Scholar 

  • Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biological Conservation 246, 108459 (2020).

    Article 

    Google Scholar 

  • Guy, C. S. et al. A paradoxical knowledge gap in science for critically endangered fishes and game fishes during the sixth mass extinction. Scientific Reports 11 (2021).

  • Compagno, L. J. V. Alternative life-history styles of cartilaginous fishes in time and space. In Alternative life-history styles of fishes 33–75 (Springer Netherlands, 1990).

  • Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature Ecology & Evolution 2, 288–298 (2018).

    ADS 
    Article 

    Google Scholar 

  • Yopak, K. E. et al. A conserved pattern of brain scaling from sharks to primates. Proceedings of the National Academy of Sciences 107, 12946–12951 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mull, C. G., Yopak, K. E. & Dulvy, N. K. Maternal Investment, Ecological Lifestyle, and Brain Evolution in Sharks and Rays. The American Naturalist 195, 1056–1069 (2020).

    Article 

    Google Scholar 

  • Mull, C. G., Pennel, M. W., Yopak, K. E. & Dulvy, N. K. Maternal investment evolves with larger body size and higher diversification rate in sharks and rays. BioRxiv TBC (2022).

  • Dulvy, N. D. & Reynolds, J. D. Evolutionary transitions among egg-laying, live-bearing, and maternal inputs in sharks and rays. Proceedings of the Royal Society B: Biological Sciences 264, 1309–1315 (1997).

    ADS 
    Article 

    Google Scholar 

  • Heithaus, M. R. et al. Advances in our understanding of the ecological importance of sharks and their relatives. In: Biology of sharks and their relatives, 3rd Ed. Carrier, J. C., Simpfendorfer, C. A., Heithaus, M. R., & Yopak, K. E. (Ed).

  • Simpfendorfer, C. A., Heupel, M. R., White, W. T. & Dulvy, N. K. The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Marine and Freshwater Research 62, 518 (2011).

    CAS 
    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Current Biology 31, 4773–4787.e8 (2021).

    CAS 
    Article 

    Google Scholar 

  • Cortés, E., Brooks, E. N. & Shertzer, K. W. Risk assessment of cartilaginous fish populations. ICES Journal of Marine Science 72, 1057–1068 (2014).

    Article 

    Google Scholar 

  • D’Alberto, B. M., Carlson, J. K., Pardo, S. A. & Simpfendorfer, C. A. Population productivity of shovelnose rays: Inferring the potential for recovery. PLOS ONE 14, e0225183 (2019).

    Article 

    Google Scholar 

  • Sharkipedia: elasmobranch traits & trends http://www.sharkipedia.org.

  • Bibliography Database. Shark-References http://www.shark-references.com.

  • Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. Journal of Fish Biology 88, 837–1037 (2016).

    CAS 
    Article 

    Google Scholar 

  • Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583 (2007).

    Article 

    Google Scholar 

  • Spalding, M. D. et al. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean & Coastal Management 60, 19–30 (2012).

    Article 

    Google Scholar 

  • Rohatgi, A. WebPlotDigitizer. Extract data from plots, images, and maps https://automeris.io/WebPlotDigitizer/.

  • Mull, C. G. et al. Sharkipedia: A database of shark and ray life history traits and abundance time-series. Zenodo https://doi.org/10.5281/zenodo.6656525 (2012).


  • Source: Ecology - nature.com

    Ursids evolved early and continuously to be low-protein macronutrient omnivores

    Effect of temperature on the life cycle of Harmonia axyridis (Pallas), and its predation rate on the Spodoptera litura (Fabricius) eggs