in

Tempo and drivers of plant diversification in the European mountain system

  • Hughes, C. E. & Atchinson, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. N. Phytol. 207, 275–282 (2015).

    Article 

    Google Scholar 

  • Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Körner, C. Alpine Plant Life (Springer, 1999).

  • Smyčka, J. et al. Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps – a phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 30, 31–40 (2018).

    Article 

    Google Scholar 

  • Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Haller, A. von. Enumeratio Methodica Stirpium Helvetiae indigenarum. (Officina Academica Abrami Vandenhoek, 1742).

  • de Candolle, A. Sur les causes de l’inégale distribution des plantes rares dans la chaîne des Alpes. Atti del Congr. Internazionale Bot. Tenuto Firenze. 92–104 (1875).

  • Boucher, F. C., Zimmermann, N. E. & Conti, E. Allopatric speciation with little niche divergence is common among alpine Primulaceae. J. Biogeogr. 43, 591–602 (2016).

    Article 

    Google Scholar 

  • Schneeweiss, G. M. et al. Molecular phylogenetic analyses identify Alpine differentiation and dysploid chromosome number changes as major forces for the evolution of the European endemic Phyteuma (Campanulaceae). Mol. Phylogenet. Evol. 69, 634–652 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tkach, N. et al. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae). Taxon 64, 1159–1187 (2015).

    Article 

    Google Scholar 

  • Favre, A. et al. Out-of-Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43, 1967–1978 (2016).

    Article 

    Google Scholar 

  • Kadereit, J. W., Griebeler, E. M. & Comes, H. Quaternary diversification in European alpine plants: pattern and process. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 265–274 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. 114, E3444–E3451 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). N. Phytol. 210, 1430–1442 (2016).

    Article 

    Google Scholar 

  • Ding, W. N., Ree, R. H., Spicer, R. A. & Xing, Y. W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roquet, C., Boucher, F. C., Thuiller, W. & Lavergne, S. Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. J. Biogeogr. 40, 1874–1886 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luebert, F. & Muller, L. A. H. Biodiversity from mountain building. Front. Genet. 6, (2015).

  • Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Haffer, J. Speciation in Colombian forest birds west of the Andes. Am. Museum Novit. 2294, 1–58 (1967).

  • Aguilée, R., Claessen, D. & Lambert, A. Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution 67, 1291–1306 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Feng, G., Mao, L., Sandel, B., Swenson, N. G. & Svenning, J. C. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 43, 145–154 (2016).

    Article 

    Google Scholar 

  • Molina-Venegas, R., Aparicio, A., Lavergne, S. & Arroyo, J. Climatic and topographical correlates of plant palaeo- and neoendemism in a Mediterranean biodiversity hotspot. Ann. Bot. 119, 229–238 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. 103, 10334–10339 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pouchon, C. et al. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 67, 1041–1060 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kadereit, J. W. The role of in situ species diversification for the evolution of high vascular plant species diversity in the European Alps—a review and interpretation of phylogenetic studies of the endemic flora of the Alps. Perspect. Plant Ecol. Evol. Syst. 26, 28–38 (2017).

    Article 

    Google Scholar 

  • Escobar García, P. et al. Extensive range persistence in peripheral and interior refugia characterizes Pleistocene range dynamics in a widespread Alpine plant species (Senecio carniolicus, Asteraceae). Mol. Ecol. 21, 1255–1270 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lohse, K., Nicholls, J. A. & Stone, G. N. Inferring the colonization of a mountain range-refugia vs. nunatak survival in high alpine ground beetles. Mol. Ecol. 20, 394–408 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stehlik, I. Resistance or emigration? Response of alpine plants to the ice ages. Taxon 52, 499–510 (2003).

    Article 

    Google Scholar 

  • Schneeweiss, G. M. & Schönswetter, P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 20, 190–192 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Westergaard, K. B. et al. Glacial survival may matter after all: Nunatak signatures in the rare European populations of two west-arctic species. Mol. Ecol. 20, 376–393 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Bettin, O., Cornejo, C., Edwards, P. J. & Holderegger, R. Phylogeography of the high alpine plant Senecio halleri (Asteraceae) in the European Alps: In situ glacial survival with postglacial stepwise dispersal into peripheral areas. Mol. Ecol. 16, 2517–2524 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tomasello, S., Karbstein, K., Hodač, L., Paetzold, C. & Hörandl, E. Phylogenomics unravels Quaternary vicariance and allopatric speciation patterns in temperate-montane plant species: a case study on the Ranunculus auricomus species complex. Mol. Ecol. 29, 2031–2049 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Ozenda, P. L’endémisme au niveau de l’ensemble du Système alpin. Acta Bot. Gall. 142, 753–762 (1995).

    Article 

    Google Scholar 

  • Rolland, J., Lavergne, S. & Manel, S. Combining niche modelling and landscape genetics to study local adaptation: A novel approach illustrated using alpine plants. Perspect. Plant Ecol. Evol. Syst. 17, 491–499 (2015).

    Article 

    Google Scholar 

  • Alvarez, N. et al. History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol. Lett. 12, 632–640 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Gao, Y.-D., Gao, X.-F. & Harris, A. Species boundaries and parapatric speciation in the complex of alpine shrubs, Rosa sericea (Rosaceae), based on population genetics and ecological tolerances. Front. Plant Sci. 10, 1–16 (2019).

    Article 

    Google Scholar 

  • Knox, E. B. Adaptive radiation of African montane plants. In Adaptive Speciation (eds. Dieckmann, U., Doebeli, M., Metz, J. A. J. & Tautz, D.) 345–361 (Cambridge University Press, 2004).

  • Segar, S. T. et al. Speciation in a keystone plant genus is driven by elevation: a case study in New Guinean Ficus. J. Evol. Biol. 30, 512–523 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pouchon, C. et al. Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. Am. J. Bot. 108, 113–128 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luebert, F. & Weigend, M. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2, 1–17 (2014).

    Article 

    Google Scholar 

  • Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, 2009).

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Goldberg, E. E. & Igić, B. Tempo and mode in plant breeding system evolution. Evolution 66, 3701–3709 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Gitzendanner, M., Soltis, P., Yi, T.-S., Li, D.-Z. & Soltis, D. Plastome Phylogenetics: 30 years of inferences into plant evolution. In Advances in Botanical Research 293–313 (Elsevier, 2018).

  • Birks, H. H. The late-quaternary history of arctic and alpine plants. Plant Ecol. Divers. 1, 135–146 (2008).

    Article 

    Google Scholar 

  • Mai, D. Tertiäre Vegetationsgeschichte Europas—Metoden und Ergebnisse. (Gustav Fischer Verlag, 1995).

  • Svenning, J. C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 6, 646–653 (2003).

    Article 

    Google Scholar 

  • Fauquette, S. et al. The Alps: a geological, climatic and human perspective on vegetation history and modern plant diversity. In Mountains, Climate and Biodiversity (eds. Hoorn, C., Perrigo, A. & Antonelli, A.) 413 (Wiley-Blackwell, 2018).

  • Mráz, P. et al. Vascular plant endemism in the Western Carpathians: spatial patterns, environmental correlates and taxon traits. Biol. J. Linn. Soc. 119, 630–648 (2016).

    Article 

    Google Scholar 

  • Puşcaş, M. et al. Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol. Ecol. 17, 2417–2429 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Puşcaş, M., Taberlet, P. & Choler, P. No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Divers. Distrib. 14, 852–861 (2008).

    Article 

    Google Scholar 

  • Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quat. Sci. Rev. 95, 60–79 (2014).

    ADS 
    Article 

    Google Scholar 

  • Prodon, R., Thibault, J. C. & Dejaifve, P. A. Expansion vs. compression of bird altitudinal ranges on a Mediterranean island. Ecology 83, 1294–1306 (2002).

    Article 

    Google Scholar 

  • Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Aguilée, R., Gascuel, F., Lambert, A. & Ferriere, R. Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nat. Commun. 9, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • Vargas, P. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52, 463–476 (2003).

    Article 

    Google Scholar 

  • Kruckeberg, A. R. An essay: the stimulus of unusual geologies for plant speciation. Syst. Bot. 11, 455–463 (1986).

    Article 

    Google Scholar 

  • Cowling, R. M. & Holmes, P. M. Endemism and speciation in a lowland flora from the Cape Floristic Region. Biol. J. Linn. Soc. 47, 367–383 (1992).

    Article 

    Google Scholar 

  • Lexer, C. et al. Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restio capensis (Restionaceae). Mol. Ecol. 23, 4373–4386 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Anacker, B. L. & Strauss, S. Y. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B Biol. Sci. 281, 20132980 (2014).

    Article 

    Google Scholar 

  • Moore, A. J. & Kadereit, J. W. The evolution of substrate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: in situ origin or repeated colonization? Am. J. Bot. 100, 2412–2425 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Guggisberg, A. et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol. 27, 5088–5103 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Gigon, A. Vergleich alpiner Rasen auf Silikat- und auf Karbonatboden—Konkurrenz—und Stickstofformenversuche sowie standortskundliche Untersuchungen im Nardetum und im Seslerietum bei Davos. (ETH Zuerich, 1971).

  • Davies, M. S. & Snaydon, R. W. Physiological differences among populations of Anthoxanthum odoratum L. collected from the park grass experiment, Rothamsted. I. Response to calcium. J. Appl. Ecol. 10, 33–45 (1973).

    Article 

    Google Scholar 

  • Snaydon, R. W. Rapid population differentiation in mosaic environment. I. The response of Anthoxantum odoratum populations to soils. Evolution 24, 257–269 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zohlen, A. & Tyler, G. Soluble inorganic tissue phosphorus and calcicole-calcifuge behaviour of plants. Ann. Bot. 94, 427–432 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kassen, R., Llewellyn, M. & Rainey, P. B. Ecological contraints on diversification in a model adaptive radiation. Nature 431, 984–988 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kolář, F. et al. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol. Ecol. 25, 3929–3949 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Dentant, C. & Lavergne, S. Plantes de haute montagne: état des lieux, évolution et analyse diachronique dans le massif des Écrins (France). Bull. Soc. linn. Provence 64, 83–98 (2013).

    Google Scholar 

  • Dentant, C. The highest vascular plants on Earth. Alp. Bot. 128, 97–106 (2018).

    Article 

    Google Scholar 

  • Boucher, F. C. et al. Reconstructing the origins of high‐alpine niches and cushion life form in the genus Androsace sl (Primulaceae). Evolution 66, 1255–1268 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Boucher, F. C., Lavergne, S., Basile, M., Choler, P. & Aubert, S. Evolution and biogeography of the cushion life form in angiosperms. Perspect. Plant Ecol. Evol. Syst. 20, 22–31 (2016).

    Article 

    Google Scholar 

  • Schönswetter, P. & Schneeweiss, G. M. Is the incidence of survival in interior Pleistocene refugia (nunataks) underestimated? Phylogeography of the high mountain plant Androsace alpina (Primulaceae) in the European Alps revisited. Ecol. Evol. 9, 4078–4086 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aeschimann, D., Rasolofo, N. & Theurillat, J. P. Analyse de la flore des Alpes. 2: Diversité et chorologie. Candollea 66, 225–253 (2011).

    Article 

    Google Scholar 

  • Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910 (2017).

    Article 

    Google Scholar 

  • Hannon, G. FASTX. http://hannonlab.cshl.edu/fastx_toolkit/ (2014).

  • Coissac, E. The ORGanelle ASseMbler 1.0.3. https://git.metabarcoding.org/org-asm/org-asm/wikis/home (2016).

  • Shaw, J. et al. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. Am. J. Bot. 101, 1987–2004 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Mansion, G. et al. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS ONE 7, e50076 (2012).

  • Rossi, M. Taxonomy, phylogeny and reproductive ecology of Gentiana lutea L (University in Bologna, 2011).

  • Hämmerli, M. Molecular Aspects in Systematics of Gentiana Sect. Calathianae Froel (Université de Neuchâtel, 2007).

  • Hungerer, K. B. & Kadereit, J. W. The phylogeny and biogeography of Gentiana L. sect. Ciminalis (Adans.) Dumort.: A historical interpretation of distribution ranges in the European high mountains. Perspect. Plant Ecol. Evol. Syst. 1, 121–135 (1998).

    Article 

    Google Scholar 

  • Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: Multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS One 6, e22594 (2011).

  • Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kück, P. & Meusemann, K. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Katoh, K., Kuma, K. I., Toh, H. & Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 1–11 (2017).

    Article 

    Google Scholar 

  • Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina (Editions Belin, 2004).

  • Castroviejo, S. Flora Iberica (Real Jardin Botanico CSIC, 2012).

  • Goliášová, K. & Michalková, E. Flóra Slovenska (Vydavateľstvo Slovenskej akadémie vied, 2012).

  • Speta, E. & Rákosy, L. Wildpflanzen Siebenbürgen (Naturhistorisches Museum Wien, 2010).

  • Sarić, M. Flora Srbije (Srpska akademija nauka i umetnosti, 1992).

  • Schönswetter, P. & Schneeweiss, G. M. Androsace komovensis sp. nov., a long mistaken local endemic from the southern Balkan Peninsula with biogeographic links to the Eastern Alps. Taxon 58, 544–549 (2009).

    Article 

    Google Scholar 

  • Schönswetter, P., Magauer, M. & Schneeweiss, G. M. Androsace halleri subsp. nuria Schönsw. & Schneew. (Primulaceae), a new taxon from the eastern Pyrenees (Spain, France). Phytotaxa 201, 227–232 (2015).

    Article 

    Google Scholar 

  • Schneeweiss, G. M. & Schonswetter, P. The wide but disjunct range of the European mountain plant Androsace lactea L. (Primulaceae) reflects Late Pleistocene range fragmentation and post-glacial distributional stasis. J. Biogeogr. 37, 2016–2025 (2010).

    Google Scholar 

  • Webb, D. A. & Gornall, R. J. Saxifrages of Europe (Timber Press, 1989).

  • GBIF. https://www.gbif.org/ (2018).

  • Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 

    Google Scholar 

  • Anacker, B. L., Whittall, J. B., Goldberg, E. E. & Harrison, S. P. Origins and consequences of serpentine endemism in the California flora. Evolution 65, 365–376 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Morlon, H. et al. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).

    Article 

    Google Scholar 

  • Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).

  • Fitzjohn, R. G., Maddison, W. P. & Otto, S. P. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611 (2009).

    PubMed 
    Article 

    Google Scholar 

  • O’Meara, B. C. & Beaulieu, J. M. Past, future, and present of state-dependent models of diversification. Am. J. Bot. 103, 792–795 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Herrera-Alsina, L., Van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Onstein, R. E. et al. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc. R. Soc. B Biol. Sci. 285, (2018).

  • Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Holland, B. R., Ketelaar-Jones, S., O’Mara, A. R., Woodhams, M. D. & Jordan, G. J. Accuracy of ancestral state reconstruction for non-neutral traits. Sci. Rep. 10, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).

    Article 

    Google Scholar 

  • Schoener, T. W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51, 408–418 (1970).

    Article 

    Google Scholar 

  • Zhang, J. spaa: SPecies Association Analysis 0.2.2. https://cran.r-project.org/package=spaa (2016).

  • Smyčka, J. Tempo and drivers of plant diversification in the European mountain system. multidiv, https://doi.org/10.5281/zenodo.6341727 (2022).


  • Source: Ecology - nature.com

    Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (north-east Pacific) based on distribution models predicted with random forest

    Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem