Rothstein, S. I. A model system for coevolution: Avian brood parasitism. Annu. Rev. Ecol. Syst. 21, 481–508 (1990).
Google Scholar
Feeney, W. E. et al. Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013).
Google Scholar
Brooke, M. de L. & Davies, N. B. Egg mimicry by cuckoos Cuculus canorus in relation to discrimination by hosts. Nature 335, 630–632 (1988).
Google Scholar
Medina, I. & Langmore, N. E. The costs of avian brood parasitism explain variation in egg rejection behaviour in hosts. Biol. Let. 11, 20150296 (2015).
Google Scholar
Langmore, N. E., Hunt, S. & Kilner, R. M. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160 (2003).
Google Scholar
Grim, T. Experimental evidence for chick discrimination without recognition in a brood parasite host. Proc. R. Soc. B: Biol. Sci. 274, 373–381 (2007).
Google Scholar
Sato, N. J., Tokue, K., Noske, R. A., Mikami, O. K. & Ueda, K. Evicting cuckoo nestlings from the nest: A new anti-parasitism behaviour. Biol. Let. 6, 67–69. https://doi.org/10.1098/rsbl.2009.0540 (2010).
Google Scholar
Davies, N. & Brooke, M. de L. Cuckoos versus reed warblers: Adaptations and counteradaptations. Anim. Behav. 36, 262–284 (1988).
Google Scholar
Langmore, N. E. et al. Visual mimicry of host nestlings by cuckoos. Proc. R. Soc. B: Biol. Sci. 278, 2455–2463 (2011).
Google Scholar
Noh, H.-J., Gloag, R. & Langmore, N. E. True recognition of nestlings by hosts selects for mimetic cuckoo chicks. Proc. R. Soc. B: Bio. Sci. 285, 20180726 (2018).
Google Scholar
Spottiswoode, C. N. & Stevens, M. Host-parasite arms races and rapid changes in bird egg appearance. Am. Nat. 179, 633–648. https://doi.org/10.1086/665031 (2012).
Google Scholar
Taylor, C. J. & Langmore, N. E. How do brood-parasitic cuckoos reconcile conflicting environmental and host selection pressures on egg size investment?. Anim. Behav. 168, 89–96. https://doi.org/10.1016/j.anbehav.2020.08.003 (2020).
Google Scholar
Langmore, N. E., Maurer, G., Adcock, G. J. & Kilner, R. M. Socially acquired host-specific mimicry and the evolution of host races in Horsfield’s bronze-cuckoo Chalcites basalis. Evolution 62, 1689–1699 (2008).
Google Scholar
Noh, H. J., Jacomb, F., Gloag, R. & Langmore, N. E. Frontline defences against cuckoo parasitism in the large-billed gerygones. Anim. Behav. 174, 51–61. https://doi.org/10.1016/j.anbehav.2021.01.021 (2021).
Google Scholar
Langmore, N. E. & Kilner, R. M. Why do Horsfield’s bronze-cuckoo Chalcites basalis eggs mimic those of their hosts?. Behav. Ecol. Sociobiol. 63, 1127–1131. https://doi.org/10.1007/s00265-009-0759-9 (2009).
Google Scholar
Spottiswoode, C. N. & Stevens, M. How to evade a coevolving brood parasite: Egg discrimination versus egg variability as host defences. Proc. R. Soc. B: Biol. Sci. 278, 3566–3573. https://doi.org/10.1098/rspb.2011.0401 (2011).
Google Scholar
Yang, C., Wang, L., Liang, W. & Møller, A. P. Egg recognition as antiparasitism defence in hosts does not select for laying of matching eggs in parasitic cuckoos. Anim. Behav. 122, 177–181. https://doi.org/10.1016/j.anbehav.2016.10.018 (2016).
Google Scholar
Stevens, M. Bird brood parasitism. Curr. Biol. 23, R909–R913. https://doi.org/10.1016/j.cub.2013.08.025 (2013).
Google Scholar
Feeney, W. E., Troscianko, J., Langmore, N. E. & Spottiswoode, C. N. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host. Proc. R. Soc. B: Biol. Sci. 282, 20150795 (2015).
Google Scholar
Davies, N. B. & Welbergen, J. A. Cuckoo–hawk mimicry? An experimental test. Proc. R. Soc. B: Biol. Sci. 275, 1817–1822 (2008).
Google Scholar
Brooker, L. C. & Brooker, M. G. Why are cuckoos host specific?. Oikos 57, 301–309. https://doi.org/10.2307/3565958 (1990).
Google Scholar
Langmore, N. E., Stevens, M., Maurer, G. & Kilner, R. M. Are dark cuckoo eggs cryptic in host nests?. Anim. Behav. 78, 461–468 (2009).
Google Scholar
Lack, D. L. Ecological Adaptations for Breeding in Birds (Methuen & Co., Ltd., 1968).
Spaw, C. D. & Rohwer, S. A comparative study of eggshell thickness in cowbirds and other passerines. The Condor 89, 307–318. https://doi.org/10.2307/1368483 (1987).
Google Scholar
Igic, B. et al. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species. J. R. Soc. Interface 8, 1654–1664. https://doi.org/10.1098/rsif.2011.0207 (2011).
Google Scholar
Brooker, M. G. & Brooker, L. C. Eggshell strength in cuckoos and cowbirds. Ibis 133, 406–413. https://doi.org/10.1111/j.1474-919X.1991.tb04589.x (1991).
Google Scholar
Maurer, G. et al. First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. 29, 209–218 (2015).
Google Scholar
Amos, A. & Rahn, H. Pores in avian eggshells: Gas conductance, gas exchange and embryonic growth rate. Respir. Physiol. 61, 1–20 (1985).
Google Scholar
Ar, A., Rahn, H. & Paganelli, C. V. The avian egg: Mass and strength. Condor 81, 331–337 (1979).
Google Scholar
Rahn, H. & Ar, A. Gas-exchange of the avian egg: Time, structure, and function. Am. Zool. 20, 477–484 (1980).
Google Scholar
Swynnerton, C. Rejections by birds of eggs unlike their own: With remarks on some of the cuckoo problems. Ibis 60, 127–154 (1918).
Google Scholar
López, A. V., Fiorini, V. D., Ellison, K. & Peer, B. D. Thick eggshells of brood parasitic cowbirds protect their eggs and damage host eggs during laying. Behav. Ecol. 29, 965–973 (2018).
Google Scholar
Wyllie, I. The Cuckoo (Batsford, 1981).
Yang, C. et al. Keeping eggs warm: Thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. Sci. Nat. 105, 10 (2018).
Google Scholar
Davies, N. B. Cuckoos Cowbirds and other Cheats (T & A D Poyser, 2000).
Spottiswoode, C. N. The evolution of host-specific variation in cuckoo eggshell strength. J. Evol. Biol. 23, 1792–1799. https://doi.org/10.1111/j.1420-9101.2010.02010.x (2010).
Google Scholar
Langmore, N. E. et al. The evolution of egg rejection by cuckoo hosts in Australia and Europe. Behav. Ecol. 16, 686–692. https://doi.org/10.1093/beheco/ari041 (2005).
Google Scholar
Rohwer, S., Spaw, C. D. & Røskaft, E. Costs to northern orioles of puncture-ejecting parasitic cowbird eggs from their nests. The Auk 106, 734–738 (1989).
Brooker, M. G., Brooker, L. C. & Rowley, I. Egg deposition by the bronze-cuckoos Chrysococcyx basalis and Chrysococcyx lucidus. Emu 88, 107–109. https://doi.org/10.1071/Mu9880107 (1988).
Google Scholar
McClelland, S. C. et al. Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies. Proc. R. Soc B-Biol. Sci. https://doi.org/10.1098/rspb.2021.1137 (2021).
Google Scholar
Gosler, A. G. & Wilkin, T. A. Eggshell speckling in a passerine bird reveals chronic long-term decline in soil calcium. Bird Study 64, 195–204. https://doi.org/10.1080/00063657.2017.1314448 (2017).
Google Scholar
Lundholm, C. E. Inhibition of prostaglandin synthesis in eggshell gland mucosa as a mechanism for P, P’-DDE-induced eggshell thinning in birds: A comparison of ducks and domestic-fowls. Comp. Biochem. Phys. C 106, 389–394. https://doi.org/10.1016/0742-8413(93)90151-A (1993).
Google Scholar
Bitman, J., Cecil, H. C. & Fries, G. F. DDT-Induced inhibition of avian shell gland carbonic anhydrase: A mechanism for thin eggshells. Science 168, 594–596. https://doi.org/10.1126/science.168.3931.594 (1970).
Google Scholar
Ratcliffe, D. A. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J. Appl. Ecol. 7, 67-+. https://doi.org/10.2307/2401613 (1970).
Google Scholar
Bouwman, H., Govender, D., Underhill, L. & Polder, A. Chlorinated, brominated and fluorinated organic pollutants in African Penguin eggs: 30 years since the previous assessment. Chemosphere 126, 1–10. https://doi.org/10.1016/j.chemosphere.2014.12.071 (2015).
Google Scholar
Bleu, J., Agostini, S., Angelier, F. & Biard, C. Experimental increase in temperature affects eggshell thickness, and not egg mass, eggshell spottiness or egg composition in the great tit (Parus major). Gen. Comp. Endocr. 275, 73–81. https://doi.org/10.1016/j.ygcen.2019.02.004 (2019).
Google Scholar
Picman, J. & Pribil, S. Is greater eggshell density an alternative mechanism by which parasitic cuckoos increase the strength of their eggs?. J. Ornithol. 138, 531–541. https://doi.org/10.1007/bf01651384 (1997).
Google Scholar
Lopez, A. V. et al. How to build a puncture- and breakage-resistant eggshell? Mechanical and structural analyses of avian brood parasites and their hosts. J. Exp. Biol. 224, jeb243016. https://doi.org/10.1242/jeb.243016 (2021).
Google Scholar
Soler, M., Rodriguez-Navarro, A. B., Perez-Contreras, T., Garcia-Ruiz, J. M. & Soler, J. J. Great spotted cuckoo eggshell microstructure characteristics can make eggs stronger. J. Avian Biol. 50, e02252. https://doi.org/10.1111/jav.02252 (2019).
Google Scholar
D’Alba, L. et al. Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. J. Morphol. 282, 1066–1079. https://doi.org/10.1002/jmor.21347 (2021).
Google Scholar
Legendre, L. J. & Clarke, J. A. Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs. Evolution 75, 1415–1430. https://doi.org/10.1111/evo.14245 (2021).
Google Scholar
Le Roy, N., Stapane, L., Gautron, J. & Hincke, M. T. Evolution of the avian eggshell biomineralization protein toolkit: New insights from multi-omics. Front. Genet. 12, 672433. https://doi.org/10.3389/fgene.2021.672433 (2021).
Google Scholar
Medina, I. & Langmore, N. E. Batten down the thatches: Front-line defences in an apparently defenceless cuckoo host. Anim. Behav. 112, 195–201. https://doi.org/10.1016/j.anbehav.2015.12.006 (2016).
Google Scholar
Starling, M., Heinsohn, R., Cockburn, A. & Langmore, N. E. Cryptic gentes revealed in pallid cuckoos Cuculus pallidus using reflectance spectrophotometry. Proc. R. Soc. Lond. B 273, 1929–1934 (2006).
Google Scholar
Abernathy, V. E., Troscianko, J. & Langmore, N. E. Egg mimicry by the Pacific koel: Mimicry of one host facilitates exploitation of other hosts with similar egg types. J. Avian Biol. 48, 1414–1424. https://doi.org/10.1111/jav.01530 (2017).
Google Scholar
Green, R. E. An evaluation of three indices of eggshell thickness. Ibis 142, 676–679. https://doi.org/10.1111/j.1474-919X.2000.tb04468.x (2000).
Google Scholar
Green, R. E. Long-term decline in the thickness of eggshells of thrushes, Turdus spp., in Britain. Proc. R. Soc. London. Ser. B: Biol. Sci. 265, 679–684. https://doi.org/10.1098/rspb.1998.0347 (1998).
Google Scholar
Igic, B. et al. Comparison of micrometer-and scanning electron microscope-based measurements of avian eggshell thickness. J. Field Ornithol. 81, 402–410 (2010).
Google Scholar
Maurer, G., Portugal, S. J. & Cassey, P. A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. Ibis 154, 714–724 (2012).
Google Scholar
Becking, J. The ultrastructure of the avian eggshell. Ibis 117, 143–151 (1975).
Google Scholar
Birkhead, T. et al. New insights from old eggs–the shape and thickness of Great Auk Pinguinus impennis eggs. Ibis 162(4), 1345–1354 (2020).
Google Scholar
Riley, A., Sturrock, C., Mooney, S. & Luck, M. Quantification of eggshell microstructure using X-ray micro computed tomography. Br. Poult. Sci. 55, 311–320 (2014).
Google Scholar
Kibala, L., Rozempolska-Rucinska, I., Kasperek, K., Zieba, G. & Lukaszewicz, M. Ultrasonic eggshell thickness measurement for selection of layers. Poult. Sci. 94, 2360–2363. https://doi.org/10.3382/ps/pev254 (2015).
Google Scholar
Khaliduzzaman, A. et al. A nondestructive eggshell thickness measurement technique using terahertz waves. Sci. Rep. 10, 1–5 (2020).
Google Scholar
Santolo, G. M. A new nondestructive method for measuring eggshell thickness using a non-ferrous material thickness gauge. Wilson J. Ornithol. 130, 502–509. https://doi.org/10.1676/17-035.1 (2018).
Google Scholar
Marini, M. A. et al. The five million bird eggs in the world’s museum collections are an invaluable and underused resource. Auk 137, ukaa036. https://doi.org/10.1093/auk/ukaa036 (2020).
Google Scholar
Brooker, M. G. & Brooker, L. C. Cuckoo hosts in Australia. Aust. Zool. Rev. 2, 1–67 (1989).
Higgins, P. J. Vol. Volume 4: Parrots to Dollarbird (Oxford University Press, 1999).
Higgins, P. J. & Peter, J. M. Vol. 6: Pardalotes to Shrike-Thrushes (Oxford University Press, 2002).
Higgins, P. J., Peter, J. M. & Cowling, S. J. Vol. 4: Parrots to Dollarbird (Oxford University Press, 2006).
Higgins, P. J., Peter, J. M. & Steele, W. K. Vol. 5: Tyrant-flycatchers to Chats (Oxford University Press, 2001).
Landstrom, M., Heinsohn, R. & Langmore, N. E. Clutch variation and egg rejection in three hosts of the pallid cuckoo Cuculus pallidus. Behaviour 147, 19–36. https://doi.org/10.1163/000579509X12483520922043 (2010).
Google Scholar
Abernathy, V. E., Johnson, L. E. & Langmore, N. E. An experimental test of defenses against avian brood parasitism in a recent host. Front. Ecol. Evol. 9, 244. https://doi.org/10.3389/fevo.2021.651733 (2021).
Google Scholar
Landstrom, M. T., Heinsohn, R. & Langmore, N. E. Does clutch variability differ between populations of cuckoo hosts in relation to the rate of parasitism?. Anim. Behav. 81, 307–312 (2011).
Google Scholar
Peterson, S. H. et al. Avian eggshell thickness in relation to egg morphometrics, embryonic development, and mercury contamination. Ecol. Evol. 10, 8715–8740. https://doi.org/10.1002/ece3.6570 (2020).
Google Scholar
Attard, M., Medina, I., Langmore, N. E. & Sherratt, E. Egg shape mimicry in parasitic cuckoos. J. Evol. Biol. 30, 2079–2084 (2017).
Google Scholar
Birchard, G. F. & Deeming, D. C. Avian eggshell thickness: Scaling and maximum body mass in birds. J. Zool. 279, 95–101. https://doi.org/10.1111/j.1469-7998.2009.00596.x (2009).
Google Scholar
Orme, D. et al. The caper package: Comparative analysis of phylogenetics and evolution in R. R Packag. Vers. 5, 549–593 (2013).
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631 (2012).
Google Scholar
Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).
Google Scholar
R Core Team. R: A language and environment for statistical computing, (2013).
Source: Ecology - nature.com