in

Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability

  • Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bousquet, P. et al. Regional changes of CO2 fluxes of land and oceans since 1980. Science 290, 1253–1262 (2000).

    Google Scholar 

  • Lee, K., Wanninkhof, R., Takahashi, T., Doney, S. C. & Feely, R. A. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396, 155 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 (2009).

    ADS 

    Google Scholar 

  • Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 3170 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. 110, 13061–13066 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. History of El Niño impacts on the global carbon cycle 1957–2017: A quantification from atmospheric CO2 data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170303 (2018).

  • Peylin, P. et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895 LP–895899 (2015).

    ADS 

    Google Scholar 

  • Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2 growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Clark, D. A., Piper, S. C., Keeling, C. D. & Clark, D. B. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proc. Natl Acad. Sci. 100, 5852–5857 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosciences 114, 1–12 (2009).

    Google Scholar 

  • Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 7, 148–152 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. 112, 201521479 (2015).

    Google Scholar 

  • Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Humphrey, V. et al. Soil moisture – atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).

  • Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Phillips, O. L. et al. Drought–mortality relationships for tropical forests Oliver. N. Phytol. 187, 631–646 (2010).

    Google Scholar 

  • Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).

    Google Scholar 

  • Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 363, 1779–1785 (2008).

    Google Scholar 

  • Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, M., Wang, X., Keenan, T. F. & Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Chang. Biol. 24, 3546–3559 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. 118, e2019377118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, X. et al. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 1–9 (2016).

    CAS 

    Google Scholar 

  • Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 14, 2015–2039 (2008).

    ADS 

    Google Scholar 

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    ADS 

    Google Scholar 

  • Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS 

    Google Scholar 

  • Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013). https://doi.org/10.1017/CBO9781107415324.

  • Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

    ADS 

    Google Scholar 

  • Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).

  • Von Buttlar, J. et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318 (2018).

    ADS 

    Google Scholar 

  • Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Tan, Z. H. et al. Optimum air temperature for tropical forest photosynthesis: Mechanisms involved and implications for climate warming. Environ. Res. Lett. 12, 054022 (2017).

  • Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10 (2020).

    Google Scholar 

  • Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep. 6, 1–7 (2016).

    Google Scholar 

  • Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 31, 1–4 (2004).

    Google Scholar 

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zscheischler, J., Mahecha, M. D. & Buttlar, J. Von. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).

  • Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. U. S. A. 110, 565–570 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, I. N., Torn, M. S., Riley, W. J. & Wehner, M. F. Impacts of climate extremes on gross primary production under global warming. Environ. Res. Lett. 9, 094011 (2014).

  • Keenan, T. F., Luo, X., Zhang, Y. & Zhou, S. Ecosystem aridity and atmospheric CO2. Sci. (80-.). 368, 251.2–252 (2020).

    Google Scholar 

  • Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).

    ADS 

    Google Scholar 

  • Hawkins, L., Kumar, J., Luo, X., Sihi, D. & Zhou, S. Measuring, Monitoring, and Modeling Ecosystem Cycling. Eos (Washington. DC). 101, (2020).

  • Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Besnard, S. et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS One 14, 1–22 (2019).

    Google Scholar 

  • Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11593 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    ADS 

    Google Scholar 

  • Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28, 538–551 (1976).

    ADS 
    CAS 

    Google Scholar 

  • Ballantyne, A. P., Alden, C. B., Miller, J. B., Trans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–73 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): Robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).

    ADS 

    Google Scholar 

  • Priestley, C. H. B. & Taylor, R. J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 100, 81–92 (1972).

    ADS 

    Google Scholar 

  • Muller, A., Rohde, R., Jacobsen, R., R., Muller, E. & Wickham, C. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics Geostatistics Overv. 01, 1–7 (2013).

    Google Scholar 

  • Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. Atmos. 111, 1–21 (2006).

    Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, 1–29 (2010).

    Google Scholar 

  • Willmott, C. J. & Matsuura, K. Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol. 34, 2577–2586 (1995).

    ADS 

    Google Scholar 

  • Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere (Basel). 8, 30052 (2017).

  • Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

    ADS 

    Google Scholar 

  • Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    ADS 

    Google Scholar 

  • Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).

    ADS 

    Google Scholar 

  • Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 946–949 (2016).

    ADS 

    Google Scholar 

  • Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. Manag. Risks Extrem. Events Disasters Adv. Clim. Chang. Adapt. Spec. Rep. Intergov. Panel Clim. Chang. 9781107025, 109–230 (2012).

    Google Scholar 

  • Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

    New maps show airplane contrails over the U.S. dropped steeply in 2020