in

Ecologically unequal exchanges driven by EU consumption

  • Rockström, J. et al. A safe operation space for humanity. Nature 461, 472–475 (2009).

    Article 

    Google Scholar 

  • Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2022 (Belknap Press, 2022).

  • Ivanova, D. et al. Environmental impact assessment of household consumption. J. Ind. Ecol. 20, 526–536 (2016).

    Article 
    CAS 

    Google Scholar 

  • Steen-Olsen, K., Weinzettel, J., Cranston, G., Ercin, A. E. & Hertwich, E. G. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ. Sci. Technol. 46, 10883–10891 (2012).

    Article 
    CAS 

    Google Scholar 

  • Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).

    Article 

    Google Scholar 

  • Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5, 311–320 (2022).

    Article 

    Google Scholar 

  • Hubacek, K. et al. Global carbon inequality. Energy, Ecol. Environ. 2, 361–369 (2017).

    Article 

    Google Scholar 

  • Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).

    Article 

    Google Scholar 

  • Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lucas, P. L., Wilting, H. C., Hof, A. F. & Van Vuuren, D. P. Allocating planetary boundaries to large economies: distributional consequences of alternative perspectives on distributive fairness. Glob. Environ. Change 60, 102017 (2020).

    Article 

    Google Scholar 

  • Beylot, A. et al. Assessing the environmental impacts of EU consumption at macro-scale. J. Clean. Prod. 216, 382–393 (2019).

    Article 

    Google Scholar 

  • Koslowski, M., Moran, D. D., Tisserant, A., Verones, F. & Wood, R. Quantifying Europe’s biodiversity footprints and the role of urbanization and income. Glob. Sustain. 3, e1 (2020).

  • Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input-output analysis. Glob. Environ. Change 38, 171–182 (2016).

    Article 

    Google Scholar 

  • Stadler, K. et al. EXIOBASE 3 (3.8.1) [Data set]. Zenodo https://doi.org/10.5281/ZENODO.4588235 (2021).

  • Roadmap to a Resource Efficient Europe (European Commission, 2011).

  • Steinmann, Z. J. N. et al. Headline environmental indicators revisited with the global multi-regional input–output database EXIOBASE. J. Ind. Ecol. 22, 565–573 (2018).

    Article 

    Google Scholar 

  • Ivanova, D. et al. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 12, 054013 (2017).

  • Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

  • Dorninger, C. et al. The effect of industrialization and globalization on domestic land-use: a global resource footprint perspective. Glob. Environ. Change 69, 102311 (2021).

    Article 

    Google Scholar 

  • Mekonnen, M. M. & Gerbens-Leenes, W. The water footprint of food. Water 12, 12 (2020).

    Article 

    Google Scholar 

  • Prell, C. & Feng, K. Unequal carbon exchanges: the environmental and economic impacts of iconic U.S. consumption items. J. Ind. Ecol. 20, 537–546 (2016).

    Article 

    Google Scholar 

  • Prell, C., Feng, K., Sun, L., Geores, M. & Hubacek, K. The economic gains and environmental losses of US consumption: a world-systems and input-output approach. Soc. Forces 93, 405–428 (2014).

    Article 

    Google Scholar 

  • Prell, C. Wealth and pollution inequalities of global trade: a network and input-output approach. Soc. Sci. J. 53, 111–121 (2016).

    Article 

    Google Scholar 

  • World Economic Outlook (October 2022) (International Monetary Fund, 2022); https://www.imf.org/external/datamapper/datasets/WEO

  • Wilting, H. C., Schipper, A. M., Ivanova, O., Ivanova, D. & Huijbregts, M. A. J. Subnational greenhouse gas and land-based biodiversity footprints in the European Union. J. Ind. Ecol. 25, 79–94 (2021). https://doi.org/10.1111/jiec.13042

  • Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 755, 142587 (2021).

  • Jakob, M., Ward, H. & Steckel, J. C. Sharing responsibility for trade-related emissions based on economic benefits. Glob. Environ. Chang. 66, 102207 (2021).

    Article 

    Google Scholar 

  • Wood, R. et al. The structure, drivers and policy implications of the European carbon footprint. Clim. Policy 20, S39–S57 (2020).

    Article 

    Google Scholar 

  • Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3. J. Ind. Ecol. 22, 553–564 (2018).

    Article 

    Google Scholar 

  • Hubacek, K., Chen, X., Feng, K., Wiedmann, T. & Shan, Y. Evidence of decoupling consumption-based CO2 emissions from economic growth. Adv. Appl. Energy 4, 100074 (2021).

    Article 

    Google Scholar 

  • Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dorninger, C. et al. Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century. Ecol. Econ. 179, 106824 (2021).

    Article 

    Google Scholar 

  • Hickel, J., Dorninger, C., Wieland, H. & Suwandi, I. Imperialist appropriation in the world economy: drain from the global South through unequal exchange, 1990–2015. Glob. Environ. Change 73, 102467 (2022).

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

  • Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ivanova, D. & Wood, R. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Glob. Sustain. 3, e18 (2020).

  • Hickel, J., O’Neill, D. W., Fanning, A. L. & Zoomkawala, H. National responsibility for ecological breakdown: a fair-shares assessment of resource use, 1970–2017. Lancet Planet. Heal. 6, e342–e349 (2022).

    Article 

    Google Scholar 

  • Otto, I. M., Kim, K. M., Dubrovsky, N. & Lucht, W. Shift the focus from the super-poor to the super-rich. Nat. Clim. Change 9, 82–84 (2019).

    Article 

    Google Scholar 

  • Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).

  • Nielsen, K. S., Nicholas, K. A., Creutzig, F., Dietz, T. & Stern, P. C. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nat. Energy 6, 1011–1016 (2021).

    Article 

    Google Scholar 

  • Jakob, M. Why carbon leakage matters and what can be done against it. One Earth 4, 609–614 (2021).

    Article 

    Google Scholar 

  • Lave, L. B. Using input–output analysis to estimate economy-wide discharges. Environ. Sci. Technol. 29, 420A–426A (1995).

    Article 
    CAS 

    Google Scholar 

  • Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 69, 211–222 (2009).

    Article 

    Google Scholar 

  • Ewing, B. R. et al. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 23, 1–8 (2012).

    Article 

    Google Scholar 

  • Brizga, J., Feng, K. & Hubacek, K. Household carbon footprints in the Baltic States: a global multi-regional input–output analysis from 1995 to 2011. Appl. Energy 189, 780–788 (2017).

  • Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zhong, H., Feng, K., Sun, L., Cheng, L. & Hubacek, K. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 273, 110979 (2020).

    Article 

    Google Scholar 

  • Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. J. Ind. Ecol. 22, 502–515 (2018).

    Article 

    Google Scholar 

  • Hardadi, G., Buchholz, A. & Pauliuk, S. Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design. J. Ind. Ecol. 25, 95–113 (2021).

  • Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    Article 
    CAS 

    Google Scholar 

  • IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  • Schmidt, S. et al. Understanding GHG emissions from Swedish consumption—current challenges in reaching the generational goal. J. Clean. Prod. 212, 428–437 (2019).

    Article 

    Google Scholar 

  • Huijbregts, M. A. J. Priority Assessment of Toxic Substances in the Frame of LCA. Development and Application of the Multi-Media Fate, Exposure and Effect Model USES-LCA (Interfaculty Department of Envrionmental Science, 1999).

  • Huijbregts, M. A. J. Priority Assessment of Toxic Substances in the Frame of LCA. Time Horizon Dependency in Toxicity Potentials Calculated with the Multi-Media Fate, Exposure and Effects Model USES-LCA (Institute for Biodiversity and Ecosystem Dynamics, 2000).

  • International Reference Life Cycle Data System (ILCD) Handbook (Publications Office EU, 2011).

  • Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints an d their ecosystem consequences. Sci. Rep. 7, 40743 (2017).

  • Chaudhary, A., Pfister, S. & Hellweg, S. Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ. Sci. Technol. 50, 3928–3936 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).

    Article 
    CAS 

    Google Scholar 

  • Marquardt, S. G. et al. Consumption-based biodiversity footprints—do different indicators yield different results? Ecol. Indic. 103, 461–470 (2019).

    Article 

    Google Scholar 

  • World Development Indicators DataBank (World Bank, 2022); https://databank.worldbank.org/source/world-development-indicators

  • World Population Prospects 2022 (United Nations, 2022); https://population.un.org/wpp/

  • Natural Earth Vector (Natural Earth, 2022); https://www.naturalearthdata.com/

  • Lahti, L., Huovari, J., Kainu, M. & Biecek, P. Retrieval and analysis of eurostat open data with the Eurostat package. R J. 9, 385–392 (2017).

  • Castellani, V., Beylot, A. & Sala, S. Environmental impacts of household consumption in Europe: comparing process-based LCA and environmentally extended input-output analysis. J. Clean. Prod. 240, 117966 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments