Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75, 1–34 (1988).
Google Scholar
Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).
Google Scholar
Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
Google Scholar
Connell, J. H. in Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) 298–312 (PUDOC, 1971).
Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40, 618–629 (2017).
Google Scholar
Gillett, J. B. Pest pressure, an underestimated factor in evolution. Syst. Assoc. Publ. 4, 37–46 (1962).
Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).
Google Scholar
Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).
Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
Google Scholar
Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).
Google Scholar
Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. Responses of plant–pathogen interactions to precipitation: Implications for tropical tree richness in a changing world. J. Ecol. 108, 1800–1809 (2020).
Google Scholar
Mangan, S. A. et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
Google Scholar
Gripenberg, S. et al. Testing for enemy-mediated density-dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos 123, 185–193 (2014).
Google Scholar
Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).
Google Scholar
Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Multiple natural enemies cause distance-dependent mortality at the seed-to-seedling transition. Ecol. Lett. 17, 593–598 (2014).
Google Scholar
Augspurger, C. K. & Kelly, C. K. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61, 211–217 (1984).
Google Scholar
Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).
Google Scholar
Eck, J. L., Stump, S. M., Delavaux, C. S., Mangan, S. A. & Comita, L. S. Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl Acad. Sci. USA 116, 7371–7376 (2019).
Google Scholar
Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol. Sci. 18, 407–419 (2015).
Google Scholar
Huberty, A. F. & Denno, R. F. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383–1398 (2004).
Google Scholar
Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).
Google Scholar
Rodríguez-Castañeda, G. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients. Glob. Ecol. Biogeogr. 22, 118–130 (2013).
Google Scholar
Janzen, D. H. & Schoener, T. W. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49, 96–110 (1968).
Google Scholar
Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol 60, 133–149 (2011).
Google Scholar
Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).
Google Scholar
Swinfield, T., Lewis, O. T., Bagchi, R. & Freckleton, R. P. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. 2, 1408–1413 (2012).
Google Scholar
Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Chang. Biol. 18, 267–276 (2012).
Google Scholar
Maharjan, S. K. et al. Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica 43, 552–561 (2011).
Google Scholar
Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).
Google Scholar
Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).
Google Scholar
Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).
Google Scholar
Barabás, G., Michalska-Smith, M. J. & Allesina, S. The effect of intra- and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12 (2016).
Google Scholar
Lebrija-Trejos, E., Wright, S. J., Hernández, A. & Reich, P. B. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology 95, 940–951 (2014).
Google Scholar
Lebrija-Trejos, E., Reich, P. B., Hernández, A. & Wright, S. J. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol. Lett. 19, 1071–1080 (2016).
Google Scholar
Green, P. T., Harms, K. E. & Connell, J. H. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc. Natl Acad. Sci. USA 111, 18649–18654 (2014).
Google Scholar
Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
Google Scholar
Moles, A. T. & Westoby, M. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106, 193–199 (2004).
Google Scholar
Paine, C. E. T., Harms, K. E., Schnitzer, S. A. & Carson, W. P. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40, 432–440 (2008).
Google Scholar
Weissflog, A., Markesteijn, L., Lewis, O. T., Comita, L. S. & Engelbrecht, B. M. J. Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall gradient. Biotropica 50, 302–311 (2018).
Google Scholar
Brenes-Arguedas, T., Coley, P. D. & Kursar, T. A. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90, 1751–1761 (2009).
Google Scholar
Gaviria, J. & Engelbrecht, B. M. J. Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. PLoS ONE 10, e0143955 (2015).
Google Scholar
Spear, E. R., Coley, P. D. & Kursar, T. A. Do pathogens limit the distributions of tropical trees across a rainfall gradient? J. Ecol. 103, 165–174 (2015).
Google Scholar
Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).
Google Scholar
Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).
Google Scholar
Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489 (2011).
Google Scholar
Krishnadas, M. & Comita, L. S. Edge effects on seedling diversity are mediated by impacts of fungi and insects on seedling recruitment but not survival. Front. Glob. Chang. 2, 76 (2019).
Google Scholar
Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).
Google Scholar
Uriarte, M., Muscarella, R. & Zimmerman, J. K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Chang. Biol. 24, e692–e704 (2018).
Google Scholar
Bachelot, B., Kobe, R. K. & Vriesendorp, C. Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia 179, 853–861 (2015).
Google Scholar
Zhu, Y. et al. Density‐dependent survival varies with species life‐history strategy in a tropical forest. Ecol. Lett. 21, 506–515 (2018).
Google Scholar
Wright, S. J., Calderón, O., Hernandéz, A. & Muller-Landau, H. C. Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86, 848–860 (2005).
Google Scholar
Condit, R. Tropical Forest Census Plots https://doi.org/10.1007/978-3-662-03664-8 (Springer, 1998).
Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry season soil water potential maps of a 50 hectare tropical forest plot on Barro Colorado Island, Panama. Sci. Data 6, 63 (2019).
Google Scholar
Garwood, N. C. in The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes (eds Leigh, E. G., Rand, A. S. & Windsor, D. M.) 173–185 (Smithsonian Institution Press, 1982).
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference https://doi.org/10.1007/b97636 (Springer, 2004).
Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).
Google Scholar
Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).
Google Scholar
Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
Google Scholar
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Bates, D. et al. Package ‘lme4’ Reference Manual https://cran.r-project.org/web/packages/lme4/lme4.pdf (2021).
Wilkinson, G. N. & Rogers, C. E. Symbolic description of factorial models for analysis of variance. Appl. Stat. 22, 392 (1973).
Google Scholar
Afshartous, D. & Preston, R. A. Key results of interaction models with centering. J. Stat. Educ. https://doi.org/10.1080/10691898.2011.11889620 (2011).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences https://doi.org/10.1016/C2013-0-10517-X (Elsevier, 1977).
Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (2016).
Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models https://CRAN.R-project.org/package=nlme (2020).
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models https://CRAN.R-project.org/package=DHARMa (2021).
Lebrija-Trejos, E., Wright, S. J. & Hernández, A. Moisture, Density-dependent Interactions, and Tropical Tree Diversity https://figshare.com/s/a4d2dbb2a73b3eb09f9f (2022).
Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry Season Soil Water Potential Maps of a 50 Hectare Tropical Forest Plot on Barro Colorado Island, Panama https://doi.org/10.6084/m9.figshare.7611005.v1 (2019).
Paton, S. Barro Colorado Island, Lutz Catchment, Soil Moisture, Manual https://doi.org/10.25573/data.10042517.v1 (2019).
Source: Ecology - nature.com