in

Familiarity, age, weaning and health status impact social proximity networks in dairy calves

  • Gartland, L. A., Firth, J. A., Laskowski, K. L., Jeanson, R. & Ioannou, C. C. Sociability as a personality trait in animals: Methods, causes and consequences. Biol. Rev. https://doi.org/10.1111/brv.12823 (2021).

    Article 

    Google Scholar 

  • Bergmüller, R. & Taborsky, M. Adaptive behavioural syndromes due to strategic niche specialization. BMC Ecol. 7, 12. https://doi.org/10.1186/1472-6785-7-12 (2007).

    Article 

    Google Scholar 

  • Massen, J. J. M., Sterck, E. H. M. & de Vos, H. Close social associations in animals and humans: Functions and mechanisms of friendship. Behaviour 147, 1379–1412. https://doi.org/10.1163/000579510X528224 (2010).

    Article 

    Google Scholar 

  • Haller, J., Harold, G., Sandi, C. & Neumann, I. D. Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J. Neuroendocrinol. 26, 724–738. https://doi.org/10.1111/jne.12182 (2014).

    Article 
    CAS 

    Google Scholar 

  • Carlson Bruce, A. Early life experiences have complex and long-lasting effects on behavior. Proc. Natl. Acad. Sci. 114, 11571–11573. https://doi.org/10.1073/pnas.1716037114 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zablocki-Thomas, P. B. et al. Personality and performance are affected by age and early life parameters in a small primate. Ecol. Evol. 8, 4598–4605. https://doi.org/10.1002/ece3.3833 (2018).

    Article 

    Google Scholar 

  • Langenhof, M. R. & Komdeur, J. Why and how the early-life environment affects development of coping behaviours. Behav. Ecol. Sociobiol. 72, 34–34. https://doi.org/10.1007/s00265-018-2452-3 (2018).

    Article 

    Google Scholar 

  • Daros, R. R., Costa, J. H. C., von Keyserlingk, M. A. G., Hötzel, M. J. & Weary, D. M. Separation from the dam causes negative judgement bias in dairy calves. PLoS One 9, e98429. https://doi.org/10.1371/journal.pone.0098429 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grześkowiak, ŁM. et al. Impact of early-life events on the susceptibility to Clostridium difficile colonisation and infection in the offspring of the pig. Gut Microbes 10, 251–259. https://doi.org/10.1080/19490976.2018.1518554 (2019).

    Article 

    Google Scholar 

  • Schmauss, C., Lee-McDermott, Z. & Medina, L. R. Trans-generational effects of early life stress: The role of maternal behavior. Sci. Rep. 4, 4873. https://doi.org/10.1038/srep04873 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brask, J. B., Ellis, S. & Croft, D. P. Animal social networks: An introduction for complex systems scientists. J. Complex Netw. 9, cnab001. https://doi.org/10.1093/comnet/cnab001 (2021).

    Article 

    Google Scholar 

  • Almeling, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A. M. & Fischer, J. Motivational shifts in aging monkeys and the origins of social selectivity. Curr. Biol. 26, 1744–1749. https://doi.org/10.1016/j.cub.2016.04.066 (2016).

    Article 
    CAS 

    Google Scholar 

  • Borgeaud, C., Sosa, S., Sueur, C. & Bshary, R. The influence of demographic variation on social network stability in wild vervet monkeys. Anim. Behav. 134, 155–165. https://doi.org/10.1016/j.anbehav.2017.09.028 (2017).

    Article 

    Google Scholar 

  • Cantor, M. et al. The importance of individual-to-society feedbacks in animal ecology and evolution. J. Anim. Ecol. 90, 27–44. https://doi.org/10.1111/1365-2656.13336 (2021).

    Article 

    Google Scholar 

  • Sosa, S., Sueur, C. & Puga-Gonzalez, I. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol. 12, 10–21. https://doi.org/10.1111/2041-210X.13366 (2021).

    Article 

    Google Scholar 

  • Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163. https://doi.org/10.1111/1365-2656.12418 (2015).

    Article 

    Google Scholar 

  • Neethirajan, S. & Kemp, B. Social network analysis in farm animals: Sensor-based approaches. Animals 11, 434. https://doi.org/10.3390/ani11020434 (2021).

    Article 

    Google Scholar 

  • Whitehead, H. Analyzing Animal Societies. University of Chicago Press, Chicago, IL, USA (2008).

  • Smith, J. E. & Pinter-Wollman, N. Observing the unwatchable: Integrating automated sensing, naturalistic observations and animal social network analysis in the age of big data. J. Anim. Ecol. 90, 62–75. https://doi.org/10.1111/1365-2656.13362 (2021).

    Article 

    Google Scholar 

  • Chen, S., Ilany, A., White, B. J., Sanderson, M. W. & Lanzas, C. Spatial-temporal dynamics of high-resolution animal networks: What can we learn from domestic animals?. PLoS One 10, e0129253. https://doi.org/10.1371/journal.pone.0129253 (2015).

    Article 
    CAS 

    Google Scholar 

  • Atton, N., Galef, B. J., Hoppitt, W., Webster, M. M. & Laland, K. N. Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals. Proc. R. Soc. B Biol. Sci. 281, 20140579. https://doi.org/10.1098/rspb.2014.0579 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ilany, A. & Akçay, E. Personality and social networks: A generative model approach. Integr. Comp. Biol. 56, 1197–1205. https://doi.org/10.1093/icb/icw068 (2016).

    Article 

    Google Scholar 

  • Romano, V. et al. Modeling infection transmission in primate networks to predict centrality-based risk. Am. J. Primatol. 78, 767–779. https://doi.org/10.1002/ajp.22542 (2016).

    Article 

    Google Scholar 

  • Ren, K., Bernes, G., Hetta, M. & Karlsson, J. Tracking and analysing social interactions in dairy cattle with real-time locating system and machine learning. J. Syst. Archit. 116, 102139. https://doi.org/10.1016/j.sysarc.2021.102139 (2021).

    Article 

    Google Scholar 

  • Boyland, N. K., Mlynski, D. T., James, R., Brent, L. J. N. & Croft, D. P. The social network structure of a dynamic group of dairy cows: From individual to group level patterns. Appl. Anim. Behav. Sci. 174, 1–10. https://doi.org/10.1016/j.applanim.2015.11.016 (2016).

    Article 

    Google Scholar 

  • Chopra, K. et al. Proximity interactions in a permanently housed dairy herd: Network structure, consistency, and individual differences. Front. Vet. Sci. 7, 583715 (2020).

    Article 

    Google Scholar 

  • Šárová, R. et al. Pay respect to the elders: Age, more than body mass, determines dominance in female beef cattle. Anim. Behav. 86, 1315–1323. https://doi.org/10.1016/j.anbehav.2013.10.002 (2013).

    Article 

    Google Scholar 

  • Foris, B., Haas, H. G., Langbein, J. & Melzer, N. Familiarity influences social networks in dairy cows after regrouping. J. Dairy Sci. 104, 3485–3494. https://doi.org/10.3168/jds.2020-18896 (2021).

    Article 
    CAS 

    Google Scholar 

  • Foris, B., Zebunke, M., Langbein, J. & Melzer, N. Comprehensive analysis of affiliative and agonistic social networks in lactating dairy cattle groups. Appl. Anim. Behav. Sci. 210, 60–67. https://doi.org/10.1016/j.applanim.2018.10.016 (2019).

    Article 

    Google Scholar 

  • de Freslon, I., Martínez-López, B., Belkhiria, J., Strappini, A. & Monti, G. Use of social network analysis to improve the understanding of social behaviour in dairy cattle and its impact on disease transmission. Appl. Anim. Behav. Sci. 213, 47–54. https://doi.org/10.1016/j.applanim.2019.01.006 (2019).

    Article 

    Google Scholar 

  • Bolt, S. L., Boyland, N. K., Mlynski, D. T., James, R. & Croft, D. P. Pair housing of dairy calves and age at pairing: Effects on weaning stress, health production and social networks. PLoS One 12, e0166926. https://doi.org/10.1371/journal.pone.0166926 (2017).

    Article 
    CAS 

    Google Scholar 

  • Koene, P. & Ipema, B. Social networks and welfare in future animal management. Animals (Basel) 4, 93–118. https://doi.org/10.3390/ani4010093 (2014).

    Article 

    Google Scholar 

  • Raussi, S. et al. The formation of preferential relationships at early age in cattle. Behav. Proc. 84, 726–731. https://doi.org/10.1016/j.beproc.2010.05.005 (2010).

    Article 

    Google Scholar 

  • Weary, D. M., Jasper, J. & Hötzel, M. J. Understanding weaning distress. Appl. Anim. Behav. Sci. 110, 24–41. https://doi.org/10.1016/j.applanim.2007.03.025 (2008).

    Article 

    Google Scholar 

  • Lopes, P. C., Block, P. & König, B. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 31790. https://doi.org/10.1038/srep31790 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ripperger, S. P., Stockmaier, S. & Carter, G. G. Tracking sickness effects on social encounters via continuous proximity sensing in wild vampire bats. Behav. Ecol. 31, 1296–1302. https://doi.org/10.1093/beheco/araa111 (2020).

    Article 

    Google Scholar 

  • McGuirk, S. M. & Peek, S. F. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Anim. Health Res. Rev. 15, 145–147. https://doi.org/10.1017/s1466252314000267 (2014).

    Article 

    Google Scholar 

  • Callan, R. J. & Garry, F. B. Biosecurity and bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 18, 57–77. https://doi.org/10.1016/S0749-0720(02)00004-X (2002).

    Article 

    Google Scholar 

  • Sewio. Tag Leonardo iMU/Personal. https://docs.sewio.net/docs/tag-leonardo-imu-personal-30146967.html (2022).

  • Barker, Z. E. et al. Use of novel sensors combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle. J. Dairy Sci. 101, 6310–6321. https://doi.org/10.3168/jds.2016-12172 (2018).

    Article 
    CAS 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing.

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i02 (2010).

    Article 

    Google Scholar 

  • Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y. & Croft, D. P. Calculating effect sizes in animal social network analysis. Methods Ecol. Evol. 12, 33–41. https://doi.org/10.1111/2041-210X.13429 (2021).

    Article 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Bell, D. C., Atkinson, J. S. & Carlson, J. W. Centrality measures for disease transmission networks. Soc. Netw. 21, 1–21. https://doi.org/10.1016/S0378-8733(98)00010-0 (1999).

    Article 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • PercieduSert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hulbert, L. E. & Moisá, S. J. Stress, immunity, and the management of calves. J. Dairy Sci. 99, 3199–3216. https://doi.org/10.3168/jds.2015-10198 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sweeney, B. C., Rushen, J., Weary, D. M. & de Passillé, A. M. Duration of weaning, starter intake, and weight gain of dairy calves fed large amounts of milk. J. Dairy Sci. 93, 148–152. https://doi.org/10.3168/jds.2009-2427 (2010).

    Article 
    CAS 

    Google Scholar 

  • Rault, J.-L. Friends with benefits: Social support and its relevance for farm animal welfare. Appl. Anim. Behav. Sci. 136, 1–14. https://doi.org/10.1016/j.applanim.2011.10.002 (2012).

    Article 

    Google Scholar 

  • Ishiwata, T., Kilgour, R. J., Uetake, K., Eguchi, Y. & Tanaka, T. Choice of attractive conditions by beef cattle in a Y-maze just after release from restraint. J. Anim. Sci. 85, 1080–1085. https://doi.org/10.2527/jas.2006-405 (2007).

    Article 
    CAS 

    Google Scholar 

  • Ede, T., von Keyserlingk, M. A. G. & Weary, D. M. Social approach and place aversion in relation to conspecific pain in dairy calves. PLoS One 15, e0232897. https://doi.org/10.1371/journal.pone.0232897 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cantor, M. C., Renaud, D. L., Neave, H. W. & Costa, J. H. C. Feeding behavior and activity levels are associated with recovery status in dairy calves treated with antimicrobials for Bovine Respiratory Disease. Sci. Rep. 12, 4854. https://doi.org/10.1038/s41598-022-08131-1 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kappeler, P. M., Cremer, S. & Nunn, C. L. Sociality and health: Impacts of sociality on disease susceptibility and transmission in animal and human societies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140116. https://doi.org/10.1098/rstb.2014.0116 (2015).

    Article 

    Google Scholar 

  • Ezenwa, V. O. et al. Host behaviour–parasite feedback: An essential link between animal behaviour and disease ecology. Proc. R. Soc. B Biol. Sci. 283, 20153078. https://doi.org/10.1098/rspb.2015.3078 (2016).

    Article 
    CAS 

    Google Scholar 

  • Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449. https://doi.org/10.1016/S0031-9384(03)00163-X (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • LavistaFerres, J. M. et al. Social connectedness and movements among communities of giraffes vary by sex and age class. Anim. Behav. 180, 315–328. https://doi.org/10.1016/j.anbehav.2021.08.008 (2021).

    Article 

    Google Scholar 

  • VanderWaal, K. L., Wang, H., McCowan, B., Fushing, H. & Isbell, L. A. Multilevel social organization and space use in reticulated giraffe (Giraffa camelopardalis). Behav. Ecol. 25, 17–26. https://doi.org/10.1093/beheco/art061 (2014).

    Article 

    Google Scholar 

  • Sato, S. & Wood-Gush, D. G. Observations on creche behaviour in suckler calves. Behav. Process. 15, 333–343. https://doi.org/10.1016/0376-6357(87)90017-9 (1987).

    Article 
    CAS 

    Google Scholar 

  • Lecorps, B., Kappel, S., Weary, D. M. & von Keyserlingk, M. A. G. Social proximity in dairy calves is affected by differences in pessimism. PLoS One 14, e0223746. https://doi.org/10.1371/journal.pone.0223746 (2019).

    Article 
    CAS 

    Google Scholar 

  • Carslake, C., Occhiuto, F., Vázquez-Diosdado, J. A. & Kaler, J. Repeatability and predictability of calf feeding behaviors—Quantifying between- and within-individual variation for precision livestock farming. Front. Vet. Sci. 9, 827124 (2022).

    Article 

    Google Scholar 

  • Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, 212019. https://doi.org/10.1098/rsos.212019 (2022).

    Article 
    ADS 

    Google Scholar 

  • Carslake, C., Occhiuto, F., Vázquez-Diosdado, J. A. & Kaler, J. Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours. Sci. Rep. 12, 19425. https://doi.org/10.1038/s41598-022-24076-x (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Planas-Sitjà, I., Deneubourg, J.-L. & Cronin, A. L. Variation in personality can substitute for social feedback in coordinated animal movements. Commun. Biol. 4, 469. https://doi.org/10.1038/s42003-021-01991-9 (2021).

    Article 

    Google Scholar 

  • Stockmaier, S., Bolnick, D. I., Page, R. A. & Carter, G. G. Sickness effects on social interactions depend on the type of behaviour and relationship. J. Anim. Ecol. 89, 1387–1394. https://doi.org/10.1111/1365-2656.13193 (2020).

    Article 

    Google Scholar 

  • Smith, L. A., Swain, D. L., Innocent, G. T., Nevison, I. & Hutchings, M. R. Considering appropriate replication in the design of animal social network studies. Sci. Rep. 9, 7208. https://doi.org/10.1038/s41598-019-43764-9 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shin, D. H., Kang, H. M. & Seo, S. Social relationships enhance the time spent eating and intake of a novel diet in pregnant Hanwoo (Bos taurus coreanae) heifers. PeerJ 5, e3329. https://doi.org/10.7717/peerj.3329 (2017).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    The importance of the Andes in the evolutionary radiation of Sigmodontinae (Rodentia, Cricetidae), the most diverse group of mammals in the Neotropics

    Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe