in

Landscape management strategies for multifunctionality and social equity

  • The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy-Makers (IPBES, 2019)

  • DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    Article 
    CAS 

    Google Scholar 

  • Turkelboom, F. et al. When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 29, 566–578 (2018).

    Article 

    Google Scholar 

  • Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).

    Article 

    Google Scholar 

  • Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).

    Article 

    Google Scholar 

  • Goldstein, J. H. et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl Acad. Sci. USA 109, 7565–7570 (2012).

    Article 
    CAS 

    Google Scholar 

  • Vallet, A., Locatelli, B. & Pramova, E. Ecosystem Services and Social Equity: Who Controls, Who Benefits and Who Loses? (CIFOR, 2020); https://doi.org/10.17528/cifor/007849

  • Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).

  • Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).

    Article 

    Google Scholar 

  • Herzig, A., Ausseil, A.-G. & Dymond, J. in Ecosystem Services in New Zealand—Conditions and Trends (ed. Dymond, J. R.) 511–523 (Manaaki Whenua Press, 2014).

  • Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. C. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).

    Article 

    Google Scholar 

  • Pennington, D. N. et al. Cost-effective land use planning: optimizing land use and land management patterns to maximize social benefits. Ecol. Econ. 139, 75–90 (2017).

    Article 

    Google Scholar 

  • Hölting, L. et al. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosyst. People 16, 354–368 (2020).

    Article 

    Google Scholar 

  • Plieninger, T. et al. Exploring futures of ecosystem services in cultural landscapes through participatory scenario development in the Swabian Alb, Germany. Ecol. Soc. 18, 39 (2013).

    Article 

    Google Scholar 

  • Tasser, E., Schirpke, U., Zoderer, B. M. & Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 42, 101082 (2020).

    Article 

    Google Scholar 

  • Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article 
    CAS 

    Google Scholar 

  • Vallet, A. et al. Linking equity, power, and stakeholders: roles in relation to ecosystem services. Ecol. Soc. 24, 14 (2019).

    Article 

    Google Scholar 

  • Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article 

    Google Scholar 

  • Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article 
    CAS 

    Google Scholar 

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article 

    Google Scholar 

  • Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).

    Article 
    CAS 

    Google Scholar 

  • Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).

    Article 
    CAS 

    Google Scholar 

  • Gunton, R. M. et al. Beyond ecosystem services: valuing the invaluable. Trends Ecol. Evol. 32, 249–257 (2017).

    Article 

    Google Scholar 

  • Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).

    Article 

    Google Scholar 

  • Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

  • Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article 

    Google Scholar 

  • Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Norton, 2017).

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    CAS 

    Google Scholar 

  • Clapp, J. & Moseley, W. G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 47, 1393–1417 (2020).

    Article 

    Google Scholar 

  • Kirwan, J. & Maye, D. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91–100 (2013).

    Article 

    Google Scholar 

  • Ellis, E. C. To conserve nature in the Anthropocene, half Earth is not nearly enough. One Earth 1, 163–167 (2019).

    Article 

    Google Scholar 

  • Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA 118, e2016038118 (2021).

  • Tyllianakis, E. & Martin-Ortega, J. Agri-environmental schemes for biodiversity and environmental protection: how we are not yet ‘hitting the right keys’. Land Use Policy 109, 105620 (2021).

    Article 

    Google Scholar 

  • Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Article 

    Google Scholar 

  • Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).

    Article 

    Google Scholar 

  • Lindenmayer, D. B. et al. Avoiding bio-perversity from carbon sequestration solutions: avoiding bio-perversity in carbon markets. Conserv. Lett. 5, 28–36 (2012).

    Article 

    Google Scholar 

  • Stoll-Kleemann, S. & O’Riordan, T. in The Encyclopedia of the Anthropocene Vol. 3 (eds DellaSala, D. A. & Goldstein, M. I.) 347–353 (Elsevier, 2018).

  • Schaich, H., Bieling, C. & Plieninger, T. Linking ecosystem services with cultural landscape research. GAIA 19, 269–277 (2010).

    Article 

    Google Scholar 

  • O’Connor, L. M. J. et al. Balancing conservation priorities for nature and for people in Europe. Science 372, 856–860 (2021).

    Article 

    Google Scholar 

  • Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).

    Article 

    Google Scholar 

  • van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).

    Article 

    Google Scholar 

  • Almeida, I., Rösch, C. & Saha, S. Converting monospecific into mixed forests: stakeholders’ views on ecosystem services in the Black Forest Region. Ecol. Soc. 26, 28 (2021).

  • Meyer, M. A. & Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in southern Germany. Land Use Policy 99, 104959 (2020).

    Article 

    Google Scholar 

  • Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).

  • Rasmussen, L. V. et al. Social–ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).

    Article 

    Google Scholar 

  • Lindborg, R. et al. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8, e01741 (2017).

    Article 

    Google Scholar 

  • Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).

    Article 

    Google Scholar 

  • Le Provost, G. et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).

  • Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Seabloom, E. W., Borer, E. T. & Tilman, D. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecol. Lett. 23, 1756–1765 (2020).

    Article 

    Google Scholar 

  • Messinger, J. & Winterbottom, B. African forest landscape restoration initiative (AFR100): restoring 100 million hectares of degraded and deforested land in Africa. Nat. Faune 30, 14–17 (2016).

    Google Scholar 

  • Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).

    Article 

    Google Scholar 

  • Le Clec’h, S. et al. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 251, 109372 (2019).

    Article 

    Google Scholar 

  • Forschungsethische Grundsätze und Prüfverfahren in den Sozial‐ und Wirtschaftswissenschaften Output 9, Berufungsperiode 5 (German Data Forum, 2017).

  • Strukturdaten Reutlingen—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-8/kreis-8415.html

  • Strukturdaten Uckermark—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-12/kreis-12073.html

  • Strukturdaten Unstrut-Hainich-Kreis—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-16/kreis-16064.html

  • Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article 

    Google Scholar 

  • Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).

  • Schall, P. et al. The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Ecol. 55, 267–278 (2018).

  • Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland Vol. 63 (Bundesministerium für Ernährung und Landwirtschaft, 2019).

  • Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0227-2 (2017).

  • Zinke, O. Heupreise steigen: Futter für die Bauern knapp und teuer. Agrarheute https://www.agrarheute.com/markt/futtermittel/heupreise-steigen-futter-fuer-bauern-knapp-teuer-571946 (2020).

  • Bois de Chez Nous (Lignum, 2021); https://www.lignum.ch/files/images/Downloads_francais/Shop/20010_Bois_de_chez_nous.pdf

  • German Timber Company—Internationaler Holzhandel (German Timber Company, 2021); https://www.germantimber.company/. Accessed 2021-11-24

  • Holzeinschlag nach Holzartengruppen, Holzsorten, ausgewählten Besitzarten (Statistisches Bundesamt, 2022); https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Wald-Holz/Tabellen/holzeinschlag-deutschland.html

  • Jahresjagdstrecke Bundesrepublik Deutschland, 2019–2020 (Deutsche Jagdverband, 2020); https://www.jagdverband.de/sites/default/files/2021-01/2021-01_Infografik_Jahresjagdstrecke_Bundesrepublik_Deutschland_2019_2020.jpg

  • Heinze, E. et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For. Ecol. Manage. 261, 288–296 (2011).

    Article 

    Google Scholar 

  • Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article 

    Google Scholar 

  • Hermes, J., Albert, C. & von Haaren, C. Mapping and Assessing Local Recreation as a Cultural Ecosystem Service in Germany. UVP-Report https://doi.org/10.17442/uvp-report.034.08 (2020).

  • Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307 (2018).

    Article 

    Google Scholar 

  • Ehrhart, S. & Schraml, U. Perception and evaluation of natural forest dynamics. Allg. Forst Jagdztg. 185, 166–183 (2014).

    Google Scholar 

  • Villanueva-Rivera, L. J. & Pijanowski, B. C. soundecology: Soundscape ecology. R package version 1.3.3 (2018).

  • Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in central Germany since the 1950s/60s—a cross-regional analysis. Divers. Distrib. 19, 1175–1187 (2013).

    Article 

    Google Scholar 

  • Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A. & Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 (2020).

    Article 

    Google Scholar 

  • Peña, L., Casado-Arzuaga, I. & Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 108–118 (2015).

    Article 

    Google Scholar 

  • Schägner, J. P., Brander, L., Paracchini, M.-L., Hartje, V. & Maes, J. Mapping recreational ecosystem services and its values across Europe: a combination of GIS and meta-analysis. In European Association of Environmental and Resource Economists 22nd Annual Conference (2016).

  • R Core Team. R: A Language and Environment for Statistical Computing v.4.2.1 (R Foundation for Statistical Computing, 2022).

  • Rust Programming Language https://www.rust-lang.org/ v 1.44

  • Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).

    Article 

    Google Scholar 

  • Gini, C. On the measurement of concentration and variability of characters (English translation from Italian by Fulvio de Santis in 2005). Metron 63, 1–38 (1914).


  • Source: Ecology - nature.com

    The impact of the striped field mouse’s range expansion on communities of native small mammals

    Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi