The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy-Makers (IPBES, 2019)
DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
Google Scholar
Turkelboom, F. et al. When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 29, 566–578 (2018).
Google Scholar
Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).
Google Scholar
Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).
Google Scholar
Goldstein, J. H. et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl Acad. Sci. USA 109, 7565–7570 (2012).
Google Scholar
Vallet, A., Locatelli, B. & Pramova, E. Ecosystem Services and Social Equity: Who Controls, Who Benefits and Who Loses? (CIFOR, 2020); https://doi.org/10.17528/cifor/007849
Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).
Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).
Google Scholar
Herzig, A., Ausseil, A.-G. & Dymond, J. in Ecosystem Services in New Zealand—Conditions and Trends (ed. Dymond, J. R.) 511–523 (Manaaki Whenua Press, 2014).
Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. C. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).
Google Scholar
Pennington, D. N. et al. Cost-effective land use planning: optimizing land use and land management patterns to maximize social benefits. Ecol. Econ. 139, 75–90 (2017).
Google Scholar
Hölting, L. et al. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosyst. People 16, 354–368 (2020).
Google Scholar
Plieninger, T. et al. Exploring futures of ecosystem services in cultural landscapes through participatory scenario development in the Swabian Alb, Germany. Ecol. Soc. 18, 39 (2013).
Google Scholar
Tasser, E., Schirpke, U., Zoderer, B. M. & Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 42, 101082 (2020).
Google Scholar
Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).
Google Scholar
Vallet, A. et al. Linking equity, power, and stakeholders: roles in relation to ecosystem services. Ecol. Soc. 24, 14 (2019).
Google Scholar
Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
Google Scholar
Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).
Google Scholar
Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).
Google Scholar
Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).
Google Scholar
Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).
Google Scholar
Gunton, R. M. et al. Beyond ecosystem services: valuing the invaluable. Trends Ecol. Evol. 32, 249–257 (2017).
Google Scholar
Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).
Google Scholar
Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).
Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).
Google Scholar
Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Norton, 2017).
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Clapp, J. & Moseley, W. G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 47, 1393–1417 (2020).
Google Scholar
Kirwan, J. & Maye, D. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91–100 (2013).
Google Scholar
Ellis, E. C. To conserve nature in the Anthropocene, half Earth is not nearly enough. One Earth 1, 163–167 (2019).
Google Scholar
Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA 118, e2016038118 (2021).
Tyllianakis, E. & Martin-Ortega, J. Agri-environmental schemes for biodiversity and environmental protection: how we are not yet ‘hitting the right keys’. Land Use Policy 109, 105620 (2021).
Google Scholar
Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).
Google Scholar
Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).
Google Scholar
Lindenmayer, D. B. et al. Avoiding bio-perversity from carbon sequestration solutions: avoiding bio-perversity in carbon markets. Conserv. Lett. 5, 28–36 (2012).
Google Scholar
Stoll-Kleemann, S. & O’Riordan, T. in The Encyclopedia of the Anthropocene Vol. 3 (eds DellaSala, D. A. & Goldstein, M. I.) 347–353 (Elsevier, 2018).
Schaich, H., Bieling, C. & Plieninger, T. Linking ecosystem services with cultural landscape research. GAIA 19, 269–277 (2010).
Google Scholar
O’Connor, L. M. J. et al. Balancing conservation priorities for nature and for people in Europe. Science 372, 856–860 (2021).
Google Scholar
Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).
Google Scholar
van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).
Google Scholar
Almeida, I., Rösch, C. & Saha, S. Converting monospecific into mixed forests: stakeholders’ views on ecosystem services in the Black Forest Region. Ecol. Soc. 26, 28 (2021).
Meyer, M. A. & Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in southern Germany. Land Use Policy 99, 104959 (2020).
Google Scholar
Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).
Rasmussen, L. V. et al. Social–ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).
Google Scholar
Lindborg, R. et al. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8, e01741 (2017).
Google Scholar
Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).
Google Scholar
Le Provost, G. et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01918-5 (2022).
Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).
Google Scholar
Seabloom, E. W., Borer, E. T. & Tilman, D. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecol. Lett. 23, 1756–1765 (2020).
Google Scholar
Messinger, J. & Winterbottom, B. African forest landscape restoration initiative (AFR100): restoring 100 million hectares of degraded and deforested land in Africa. Nat. Faune 30, 14–17 (2016).
Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).
Google Scholar
Le Clec’h, S. et al. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 251, 109372 (2019).
Google Scholar
Forschungsethische Grundsätze und Prüfverfahren in den Sozial‐ und Wirtschaftswissenschaften Output 9, Berufungsperiode 5 (German Data Forum, 2017).
Strukturdaten Reutlingen—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-8/kreis-8415.html
Strukturdaten Uckermark—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-12/kreis-12073.html
Strukturdaten Unstrut-Hainich-Kreis—Statistisches Bundesamt (Bundeswahlleiter, 2020); https://www.bundeswahlleiter.de/europawahlen/2019/strukturdaten/bund-99/land-16/kreis-16064.html
Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).
Google Scholar
Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).
Schall, P. et al. The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Ecol. 55, 267–278 (2018).
Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland Vol. 63 (Bundesministerium für Ernährung und Landwirtschaft, 2019).
Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0227-2 (2017).
Zinke, O. Heupreise steigen: Futter für die Bauern knapp und teuer. Agrarheute https://www.agrarheute.com/markt/futtermittel/heupreise-steigen-futter-fuer-bauern-knapp-teuer-571946 (2020).
Bois de Chez Nous (Lignum, 2021); https://www.lignum.ch/files/images/Downloads_francais/Shop/20010_Bois_de_chez_nous.pdf
German Timber Company—Internationaler Holzhandel (German Timber Company, 2021); https://www.germantimber.company/. Accessed 2021-11-24
Holzeinschlag nach Holzartengruppen, Holzsorten, ausgewählten Besitzarten (Statistisches Bundesamt, 2022); https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Wald-Holz/Tabellen/holzeinschlag-deutschland.html
Jahresjagdstrecke Bundesrepublik Deutschland, 2019–2020 (Deutsche Jagdverband, 2020); https://www.jagdverband.de/sites/default/files/2021-01/2021-01_Infografik_Jahresjagdstrecke_Bundesrepublik_Deutschland_2019_2020.jpg
Heinze, E. et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For. Ecol. Manage. 261, 288–296 (2011).
Google Scholar
Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).
Google Scholar
Hermes, J., Albert, C. & von Haaren, C. Mapping and Assessing Local Recreation as a Cultural Ecosystem Service in Germany. UVP-Report https://doi.org/10.17442/uvp-report.034.08 (2020).
Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307 (2018).
Google Scholar
Ehrhart, S. & Schraml, U. Perception and evaluation of natural forest dynamics. Allg. Forst Jagdztg. 185, 166–183 (2014).
Villanueva-Rivera, L. J. & Pijanowski, B. C. soundecology: Soundscape ecology. R package version 1.3.3 (2018).
Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in central Germany since the 1950s/60s—a cross-regional analysis. Divers. Distrib. 19, 1175–1187 (2013).
Google Scholar
Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A. & Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 (2020).
Google Scholar
Peña, L., Casado-Arzuaga, I. & Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 108–118 (2015).
Google Scholar
Schägner, J. P., Brander, L., Paracchini, M.-L., Hartje, V. & Maes, J. Mapping recreational ecosystem services and its values across Europe: a combination of GIS and meta-analysis. In European Association of Environmental and Resource Economists 22nd Annual Conference (2016).
R Core Team. R: A Language and Environment for Statistical Computing v.4.2.1 (R Foundation for Statistical Computing, 2022).
Rust Programming Language https://www.rust-lang.org/ v 1.44
Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).
Google Scholar
Gini, C. On the measurement of concentration and variability of characters (English translation from Italian by Fulvio de Santis in 2005). Metron 63, 1–38 (1914).
Source: Ecology - nature.com