Elrick, M. et al. Major Early-Middle Devonian oceanic oxygenation linked to early land plant evolution detected using high-resolution U isotopes of marine limestones. Earth Planet. Sci. Lett. 581, 117410 (2022).
Google Scholar
Algeo, T. J. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353(1365), 113–130 (1998).
Capel, E. et al. The Silurian-Devonian terrestrial revolution: Diversity patterns and sampling bias of the vascular plant macrofossil record. Earth Sci. Rev. 231, 104085 (2022).
Racki, G., Joachimski, M. M. & Morrow, J. R. A major perturbation of the global carbon budget in the Early-Middle Frasnian transition (Late Devonian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 269(3–4), 127–129 (2008).
Stein, W. E., Berry, C. M., Hernick, L. V. & Mannolini, F. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483(7387), 78–81 (2012).
Google Scholar
Retallack, G. J. & Huang, C. Ecology and evolution of Devonian trees in New York, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(1–2), 110–128 (2011).
Qie, W., Algeo, T. J., Luo, G. & Herrmann, A. Global events of the late Paleozoic (early Devonian to Middle Permian): A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 531, 109259 (2019).
Smart, M. S., Filippelli, G., Gilhooly III, W. P., Marshall, J. E. & Whiteside, J. H. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records. GSA Bulletin. Nov. 9 (2022).
Śliwiński, M. G., Whalen, M. T. & Day, J. Trace element variations in the Middle Frasnian punctata zone (Late Devonian) in the western Canada sedimentary basin— changes in oceanic bioproductivity and paleoredox spurred by a pulse of terrestrial afforestation?. Geol. Belg. 4, 459–482 (2010).
Filippelli, G. M. & Souch, C. Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology 27(2), 171–174 (1999).
Google Scholar
Filippelli, G. M., Souch, C., Horn, S. P. & Newkirk, D. The pre-Colombian footprint on terrestrial nutrient cycling in Costa Rica: Insights from phosphorus in a lake sediment record. J. Paleolimnol. 43(4), 843–856 (2010).
Google Scholar
Pisarzowska, A. & Racki, G. Comparative carbon isotope chemostratigraphy of major Late Devonian biotic crises. In Stratigraphy & Timescales. 387–466, vol. 5. (Academic Press, 2020).
Mortlock, R. A. & Froelich, P. N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res. Part A Oceanogr. Res. Pap. 36(9), 1415–1426 (1989).
Google Scholar
Schieber, J., Krinsley, D. & Riciputi, L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature 406(6799), 981–985 (2000).
Google Scholar
Buckman, J., Mahoney, C., März, C., Wagner, T. & Blanco, V. Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging. Am. Miner. 102(4), 833–844 (2017).
Google Scholar
Gao, P., He, Z., Lash, G. G., Zhou, Q. & Xiao, X. Controls on silica enrichment of Lower Cambrian organic-rich shale deposits. Mar. Pet. Geol. 130, 105126 (2021).
Google Scholar
Schieber, J. Early diagenetic silica deposition in algal cysts and spores; a source of sand in black shales?. J. Sediment. Res. 66(1), 175–183 (1996).
Śliwiński, M. G., Whalen, M. T., Newberry, R. J., Payne, J. H. & Day, J. E. Stable isotope (δ13Ccarb and org, δ15Norg) and trace element anomalies during the Late Devonian ‘punctata Event’in the Western Canada Sedimentary Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307(1–4), 245–271 (2011).
Papazis, P. K. & Milliken, K. Cathodoluminescent textures and the origin of quartz in the Mississippian Barnett Shale, Fort Worth Basin, Texas. In AAPG Annual Meeting, Volume Abstracts: Calgary, Alberta, American Association of Petroleum Geologists A, 105 (2005).
Ross, D. J. & Bustin, R. M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem. Geol. 260(1–2), 1–19 (2009).
Google Scholar
Götze, J., Plötze, M. & Habermann, D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz–a review. Mineral. Petrol. 71(3), 225–250 (2001).
Google Scholar
Milliken, K. L., Ergene, S. M. & Ozkan, A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, south Texas, USA. Sed. Geol. 339, 273–288 (2016).
Google Scholar
Blatt, H. Perspectives; Oxygen isotopes and the origin of quartz. J. Sediment. Res. 57(2), 373–377 (1987).
Google Scholar
Rowe, H. D., Loucks, R. G., Ruppel, S. C. & Rimmer, S. M. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction. Chem. Geol. 257(1–2), 16–25 (2008).
Google Scholar
Wright, A. M., Ratcliffe, K. T., Zaitlin, B. A. & Wray, D. S. The application of chemostratigraphic techniques to distinguish compound incised valleys in low-accommodation incised-valley systems in a foreland-basin setting: An example from the Lower Cretaceous Mannville Group and Basal Colorado Sandstone (Colorado Group), Western Canadian Sedimentary Basin, in K.T. Ratcliffe, and B.A. Zaitlin (eds.), Application of Modern Stratigraphic Techniques: Theory and Case Histories: SEPM SP PUB no. 94 (2010).
Murata, K. J. & Norman, M. B. An index of crystallinity for quartz. Am. J. Sci. 276(9), 1120–1130 (1976).
Google Scholar
Tréguer, P. J. et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18(4), 1269–1289 (2021).
Google Scholar
Rivard, B., Harris, N. B., Feng, J. & Dong, T. Inferring total organic carbon and major element geochemical and mineralogical characteristics of shale core from hyperspectral imagery. AAPG Bull. 102(10), 2101–2121 (2018).
Lippincott, E. R., Van Valkenburg, A., Weir, C. E. & Bunting, E. N. Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J. Res. Natl. Bur. Stand 61(1), 61–70 (1958).
Google Scholar
Salisbury, J. W., D’Aria, D. M. & Jarosewich, E. Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites. Icarus 92(2), 280–297 (1991).
Google Scholar
Wong, P. K., Weissenberger, J. A. W., Gilhooly, M. G., Playton, T. E. & Kerans, C. Revised regional Frasnian sequence stratigraphic framework, Alberta outcrop and subsurface. New Adv. Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigr. 49(1), 37–85 (2016).
Wendte, J. C. Cooking Lake platform evolution and its control on Late Devonian Leduc reef inception and localization, Redwater, Alberta. Bull. Can. Pet. Geol. 42(4), 499–528 (1994).
Wendte, J., Stoakes, F. A. & Campbell, C. V. Cyclicity of Devonian strata in the Western Canada Sedimentary Basin. In: Devonian-Early Mississippian Carbonates of the Western Canada Sedimentary Basin: A sequence stratigraphic framework. J. Wendte (ed.). Society of Economic Paleontologists and Mineralogists, Short Course no. 28, p. 25–40 (1995).
Stoakes, F. A. Nature and control of shale basin fill and its effect on reef growth and termination: Upper Devonian Duvernay and Ireton Formations of Alberta, Canada. Bull. Can. Pet. Geol. 28(3), 345–410 (1980).
Alberta Energy Regulator Duvernay Reserves and Resources Report: A Comprehensive Analysis of Alberta’s Foremost Liquids-Rich Shale Resource, December 2016.
Knapp, L. J., McMillan, J. M. & Harris, N. B. A depositional model for organic-rich Duvernay Formation mudstones. Sed. Geol. 347, 160–182 (2017).
Google Scholar
Andrichuk, J. M. Stratigraphic evidence for tectonic and current control of Upper Devonian reef sedimentation, Duhamel area, Alberta, Canada. AAPG Bull. 45(5), 612–632 (1961).
Harris, N. B., McMillan, J. M., Knapp, L. J. & Mastalerz, M. Organic matter accumulation in the Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin, from sequence stratigraphic analysis and geochemical proxies. Sed. Geol. 376, 185–203 (2018).
Google Scholar
Hildred, G. V., Ratcliffe, K. T., Wright, A. M., Zaitlin, B. A. & Wray, D. S. Chemostratigraphic applications to low-accommodation fluvial incised-valley settings: An example from the Lower Mannville Formation of Alberta, Canada. J. Sedim. Res. 80(11), 1032–1045 (2010).
Wedepohl, K. H. Environmental influences on the chemical composition of shales and clays. Phys. Chem. Earth 8, 307–333 (1971).
Google Scholar
Pearce, T. J., Martin, J. H., Cooper, D. & Wray, D. S. Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the Southern North Sea (United Kingdom). Application of Modern Stratigraphic Techniques: Theory and Case Histories. SEPM Spec. Publ. 94, 109–127 (2010).
Adachi, M., Yamamoto, K. & Sugisaki, R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sed. Geol. 47(1–2), 125–148 (1986).
Google Scholar
Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D. & Caritat, P. D. Silica activity and the smectite-illite reaction. Geology 22(6), 539–542 (1994).
Google Scholar
McLennan, S. M. Weathering and global denudation. J. Geol. 101(2), 295–303 (1993).
Google Scholar
Nesbitt, H. W. & Young, G. M. Formation and diagenesis of weathering profiles. J. Geol. 97(2), 129–147 (1989).
Google Scholar
Fedo, C. M., Wayne Nesbitt, H. & Young, G. M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10), 921–924 (1995).
Google Scholar
Nesbitt, H. W. & Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).
Google Scholar
von Eynatten, H., Barceló-Vidal, C. & Pawlowsky-Glahn, V. Modelling compositional change: The example of chemical weathering of granitoid rocks. Math. Geol. 35(3), 231–251 (2003).
Clark, R. N. & Rencz, A. N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual Remote Sens. 3(11), 3–58 (1999).
Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem. Geol. 161(1–3), 181–198 (1999).
Google Scholar
Holmden, C. et al. Carbon isotope chemostratigraphy of Frasnian sequences in Western Canada. Saskatchewan Geol. Surv. Summary Investig. 1, 1–6 (2006).
Pisarzowska, A. & Racki, G. Isotopic chemostratigraphy across the Early-Middle Frasnian transition (Late Devonian) on the South Polish carbonate shelf: A reference for the global punctata Event. Chem. Geol. 334, 199–220 (2012).
Google Scholar
Racki, G. & Bultynck, P. Conodont biostratigraphy of the Middle to Upper Devonian boundary Beds in the Kielce area of the Holy Cross Mts. Acta Geol. Pol. 44, 1–25 (1993).
Ziegler and Sandberg. The Late Devonian standard conodont zonation CFS, Cour. Forschungsinst. Senckenberg, 121 (1990).
Klapper, G., The Montagne Noire Frasnian (Upper Devonian) conodont succession. In McMillan, N.J., et al., eds., Devonian of the world, Volume III: Canadian Society of Petroleum Geologists Memoir 14, p. 449–468 (1988).
Jiao, X. et al. Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin, NW China: Implications for penecontemporaneous transformation of silica minerals. Int. J. Earth Sci. 107(6), 1989–2009 (2018).
Google Scholar
Peltonen, C., Marcussen, Ø., Bjørlykke, K. & Jahren, J. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties. Mar. Pet. Geol. 26(6), 887–898 (2009).
Google Scholar
Pearce, T. J., Besly, B. M., Wray, D. S. & Wright, D. K. Chemostratigraphy: A method to improve interwell correlation in barren sequences—a case study using onshore Duckmantian/Stephanian sequences (West Midlands, UK). Sed. Geol. 124(1–4), 197–220 (1999).
Google Scholar
Calvert, S. E. & Pedersen, T. F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Dev. Mar. Geol. 1, 567–644 (2007).
Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group, northeastern Calabria: Implications for burial history and diagenetic evolution. Int. Geol. Rev. 50(12), 1116–1131 (2008).
Johnson, J. G., Klapper, G. & Sandberg, C. A. Devonian eustatic fluctuations in Euramerica. Geol. Soc. Am. Bull. 96(5), 567–587 (1985).
Google Scholar
Warme, J. E. & Sandberg, C. A. Alamo megabreccia: Record of a Late Devonian impact in southern Nevada. GSA Today 6(1), 1–7 (1996).
Ernst, R. E., Rodygin, S. A. & Grinev, O. M. Age correlation of Large Igneous Provinces with Devonian biotic crises. Glob. Planet. Change 185, 103097 (2020).
Schiffbauer, J. D. et al. Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Sci. Adv. 3(3), e1602158 (2017).
Google Scholar
Duller, R. A., Armitage, J. J., Manners, H. R., Grimes, S. & Jones, T. D. Delayed sedimentary response to abrupt climate change at the Paleocene-Eocene boundary, northern Spain. Geology 47(2), 159–162 (2019).
Google Scholar
Source: Ecology - nature.com